pooling.py 45.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from ...fluid.dygraph import layers
from ...fluid.layer_helper import LayerHelper
from .. import functional as F

__all__ = [
20 21 22
    'AvgPool1d',
    'AvgPool2d',
    'AvgPool3d',
23 24
    'MaxPool1d',
    'MaxPool2d',
25
    'MaxPool3d',
26 27 28 29 30 31
    'AdaptiveAvgPool1d',
    'AdaptiveAvgPool2d',
    'AdaptiveAvgPool3d',
    'AdaptiveMaxPool1d',
    'AdaptiveMaxPool2d',
    'AdaptiveMaxPool3d',
32 33 34
]


35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
class AvgPool1d(layers.Layer):
    """
    This operation applies a 1D average pooling over an input signal composed
    of several input planes, based on the input, output_size, return_indices parameters.
    Input(X) and output(Out) are in NCL format, where N is batch
    size, C is the number of channels, L is the length of the feature.
    The output tensor shape will be [N, C, output_size].

    The output value of the layer with input size (N, C, L),
    output (N, C, L_{out}) and kernel_size k can be precisely described as
    For average pool1d:

    ..  math::

       Output(N_i, C_i, l) &= mean(Input[N_i, C_i, stride \times l:stride \times l+k])


    Args:
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
54
            it must contain an integer.
55
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
56 57 58 59 60 61 62 63
            it must contain an integer.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 1, which means the feature map is zero padded by the size of `padding[0]` on every sides.
            4. A list[int] or tuple(int) whose length is 2. It has the form [pad_before, pad_after].
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
64
        count_include_pad (bool): Whether to exclude padding points in average pooling
65
                          mode, default is `True`.
66
        ceil_mode (bool): ${ceil_mode_comment}Whether to use the ceil function to calculate output height and width.
67
            If it is set to False, the floor function will be used. The default value is False.
68 69 70 71 72 73 74 75 76 77 78
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.

    Returns:
        None.

    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ValueError: If `padding` is a list or tuple but its length greater than 1.
79
        ShapeError: If the input is not a 3-D tensor.
80 81 82
        ShapeError: If the output's shape calculated is not greater than 0.


83 84 85 86
    Shape:
        - inpuut: 3-D tensor.
        - output: 3-D tensor

87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
    Examples:

        .. code-block:: python
          import paddle
          import paddle.nn as nn
          paddle.disable_static()

          data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
          AvgPool1d = nn.AvgPool1d(kernel_size=2, stride=2, padding=0)
          pool_out = AvgPool1d(data)
          # pool_out shape: [1, 3, 16]

    """

    def __init__(self,
                 kernel_size,
                 stride=None,
                 padding=0,
                 count_include_pad=True,
                 ceil_mode=False,
                 name=None):
        super(AvgPool1d, self).__init__()
        self.kernel_size = kernel_size
        self.stride = stride
        self.padding = padding
        self.ceil_mode = ceil_mode
        self.count_include_pad = count_include_pad
        self.name = name

    def forward(self, x):
        out = F.avg_pool1d(x, self.kernel_size, self.stride, self.padding,
                           self.count_include_pad, self.ceil_mode, self.name)
        return out


122
class AvgPool2d(layers.Layer):
123
    """
124 125 126 127
    This operation applies 2D average pooling over input features based on the input,
    and kernel_size, stride, padding parameters. Input(X) and Output(Out) are
    in NCHW format, where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
128

129 130 131 132 133
    Example:
      Input:
           X shape: $(N, C, H_{in}, W_{in})$
      Attr:
           kernel_size: ksize
134

135 136 137 138 139 140
      Output:
           Out shape: $(N, C, H_{out}, W_{out})$
           $$
           out(N_i, C_j, h, w)  = \frac{1}{ksize[0] * ksize[1]} \sum_{m=0}^{ksize[0]-1} \sum_{n=0}^{ksize[1]-1}
                               input(N_i, C_j, stride[0] \times h + m, stride[1] \times w + n)
           $$
141 142

    Args:
143 144 145
       kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
146
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.

        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 2, [pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 4. [pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
        ceil_mode (bool): when True, will use `ceil` instead of `floor` to compute the output shape
        count_include_pad (bool): Whether to exclude padding points in average pooling
                          mode, default is `true`.
        divisor_override (float): if specified, it will be used as divisor, otherwise kernel_size will be used. Default None.
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NDHW"`.
                        The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_height, input_width]`.
164 165 166 167
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.

168 169 170
    Shape:
        - x: 4-D tensor.
        - out: 2-D tensor
171

172
    Returns: None.
173 174 175 176 177 178 179 180
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
    Examples:
        .. code-block:: python
          import paddle
          import paddle.nn as nn
181
          import numpy as np
182 183
          paddle.disable_static()

184 185 186 187 188 189
          # max pool2d
          input = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32]).astype(np.float32))
          AvgPool2d = nn.AvgPool2d(kernel_size=2,
                                stride=2, padding=0)
          output = AvgPoo2d(input)
          # output.shape [1, 3, 16, 16]
190 191 192 193 194 195 196 197

    """

    def __init__(self,
                 kernel_size,
                 stride=None,
                 padding=0,
                 ceil_mode=False,
198 199 200
                 count_include_pad=True,
                 divisor_override=None,
                 data_format="NCHW",
201
                 name=None):
202 203
        super(AvgPool2d, self).__init__()
        self.ksize = kernel_size
204 205 206
        self.stride = stride
        self.padding = padding
        self.ceil_mode = ceil_mode
207 208 209
        self.count_include_pad = count_include_pad
        self.divisor = divisor_override
        self.data_format = data_format
210 211
        self.name = name

212 213 214 215 216 217 218 219 220 221 222
    def forward(self, x):
        return F.avg_pool2d(
            x,
            kernel_size=self.ksize,
            stride=self.stride,
            padding=self.padding,
            ceil_mode=self.ceil_mode,
            count_include_pad=self.count_include_pad,
            divisor_override=self.divisor,
            data_format=self.data_format,
            name=self.name)
223 224


225
class AvgPool3d(layers.Layer):
226
    """
227 228 229 230
    This operation applies 3D max pooling over input features based on the input,
    and kernel_size, stride, padding parameters. Input(X) and Output(Out) are
    in NCDHW format, where N is batch size, C is the number of channels,
    H is the height of the feature,  D is the depth of the feature, and W is the width of the feature.
231 232

    Args:
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size
            is a tuple or list, it must contain three integers,
            (kernel_size_Depth, kernel_size_Height, kernel_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain three integers, [stride_Depth, stride_Height, stride_Width).
            Otherwise, the pool stride size will be a cube of an int.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
        ceil_mode (bool): ${ceil_mode_comment}
        count_include_pad (bool): Whether to exclude padding points in average pooling
                          mode, default is True.
        divisor_override (int|float) if specified, it will be used as divisor, otherwise kernel_size will be used. Default None.
        data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`.
254 255 256 257
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.

258
    Returns: None.
259
    Raises:
260 261 262 263 264 265 266
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.

    Shape:
        - x: 5-D tensor.
        - out: 5-D tensor.
267 268 269 270 271

    Examples:
        .. code-block:: python
          import paddle
          import paddle.nn as nn
272
          import numpy as np
273 274
          paddle.disable_static()

275 276 277 278 279 280 281
          # avg pool3d
          input = paddle.to_tensor(np.random.uniform(-1, 1, [1, 2, 3, 32, 32]).astype(np.float32))
          AvgPool3d = nn.AvgPool3d(kernel_size=2,
                                   stride=2, padding=0)
          output = AvgPool3d(input)
          # output.shape [1, 2, 3, 16, 16]

282 283
    """

284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
    def __init__(self,
                 kernel_size,
                 stride,
                 padding=0,
                 ceil_mode=False,
                 count_include_pad=True,
                 divisor_override=None,
                 data_format="NCDHW",
                 name=None):
        super(AvgPool3d, self).__init__()
        self.ksize = kernel_size
        self.stride = stride
        self.padding = padding
        self.ceil_mode = ceil_mode
        self.count_include_pad = count_include_pad
        self.divisor = divisor_override
        self.data_format = data_format
301 302
        self.name = name

303 304 305 306 307 308 309 310 311 312 313
    def forward(self, x):
        return F.avg_pool3d(
            x,
            kernel_size=self.ksize,
            stride=self.stride,
            padding=self.padding,
            ceil_mode=self.ceil_mode,
            count_include_pad=self.count_include_pad,
            divisor_override=self.divisor,
            data_format=self.data_format,
            name=self.name)
314 315


316
class MaxPool1d(layers.Layer):
317
    """
318 319
    Applies a 1D max pooling over an input signal composed of several input planes based
    on the input, output_size, return_indices parameters.
320 321 322
    Input(X) and output(Out) are in NCL format, where N is batch
    size, C is the number of channels, L is the length of the feature.

323 324 325
    The output value of the layer with input size (N, C, L),
    output (N, C, L_{out}) and kernel_size k can be precisely described as
    For average pool1d:
326 327 328

    ..  math::

329
       Output(N_i, C_i, l) &=  max(Input[N_i, C_i, stride \times l:stride \times l+k])}
330 331

    Args:
332 333 334 335 336 337 338 339 340 341 342 343 344 345
       kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain an integer.
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain an integer.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An integer, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 1, which means the feature map is zero padded by the size of `padding[0]` on every sides.
            4. A list[int] or tuple(int) whose length is 2. It has the form [pad_before, pad_after].
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
        return_indices (bool): Whether return the max indices along with the outputs. default is `False`.
        ceil_mode (bool): Whether to use the ceil function to calculate output height and width. False is the default.
            If it is set to False, the floor function will be used. Default False.
346 347 348 349 350 351 352
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        None.

    Raises:
353 354 355 356 357 358 359 360 361 362
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ValueError: If `padding` is a list or tuple but its length greater than 1.
        ShapeError: If the input is not a 3-D.
        ShapeError: If the output's shape calculated is not greater than 0.


    Shape:
        - x: 3-D tensor.
        - out: 3-D tensor.
363 364

    Examples:
365

366 367
        .. code-block:: python

368
          import paddle
369 370 371 372
          import paddle.nn as nn
          paddle.disable_static()

          data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
373 374
          MaxPool1d = nn.MaxPool1d(kernel_size=2, stride=2, padding=0)
          pool_out = MaxPool1d(data)
375 376
          # pool_out shape: [1, 3, 16]

377 378
          MaxPool1d = nn.MaxPool1d(kernel_size=2, stride=2, padding=0, return_indices=True)
          pool_out, indices = MaxPool1d(data)
379 380 381 382
          # pool_out shape: [1, 3, 16], indices shape: [1, 3, 16]

    """

383 384 385 386 387 388 389 390 391 392 393 394
    def __init__(self,
                 kernel_size,
                 stride=None,
                 padding=0,
                 return_indices=False,
                 ceil_mode=False,
                 name=None):
        super(MaxPool1d, self).__init__()
        self.kernel_size = kernel_size
        self.stride = stride
        self.padding = padding
        self.ceil_mode = ceil_mode
395 396 397 398
        self.return_indices = return_indices
        self.name = name

    def forward(self, input):
399 400 401
        out = F.max_pool1d(input, self.kernel_size, self.stride, self.padding,
                           self.return_indices, self.ceil_mode, self.name)
        return out
402 403


404
class MaxPool2d(layers.Layer):
405
    """
406
    This operation applies 2D max pooling over input feature based on the input,
407 408 409 410 411 412 413 414 415 416 417 418 419
    and kernel_size, stride, padding parameters. Input(X) and Output(Out) are
    in NCHW format, where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.

    Example:
      Input:
           X shape: $(N, C, H_{in}, W_{in})$
      Attr:
           kernel_size: ksize

      Output:
           Out shape: $(N, C, H_{out}, W_{out})$
           $$
420 421 422
           out(N_i, C_j, h, w) ={} & \max_{m=0, \ldots, ksize[0] -1} \max_{n=0, \ldots, ksize[1]-1} \\
                                    & \text{input}(N_i, C_j, \text{stride[0]} \times h + m,
                                                   \text{stride[1]} \times w + n)
423 424 425 426 427 428 429 430
           $$

    Args:
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
431 432 433 434 435 436 437 438
            Otherwise, the pool stride size will be a square of an int.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 2, [pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 4. [pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
439
        ceil_mode (bool): when True, will use `ceil` instead of `floor` to compute the output shape
440
        return_indices (bool): Whether to return the max indices along with the outputs.
441 442 443
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NDHW"`.
                        The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_height, input_width]`.
444 445 446
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
447

448
    Returns: None
449 450 451 452
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
453 454 455 456 457

    Shape:
        - x: 4-D tensor.
        - out: 4-D tensor.

458 459 460 461 462 463 464 465 466
    Examples:
        .. code-block:: python
          import paddle
          import paddle.nn as nn
          import numpy as np
          paddle.disable_static()

          # max pool2d
          input = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32]).astype(np.float32))
467 468 469
          MaxPool2d = nn.MaxPool2d(kernel_size=2,
                                   stride=2, padding=0)
          output = MaxPool2d(input)
470 471
          # output.shape [1, 3, 16, 16]

472 473 474 475
          # for return_indices=True
          MaxPool2d = nn.MaxPool2d(kernel_size=2,stride=2, padding=0, return_indices=True)
          output, max_indices = MaxPool2d(input)
          # output.shape [1, 3, 16, 16], max_indices.shape [1, 3, 16, 16],
476 477 478 479 480 481
    """

    def __init__(self,
                 kernel_size,
                 stride=None,
                 padding=0,
482
                 return_indices=False,
483 484 485
                 ceil_mode=False,
                 data_format="NCHW",
                 name=None):
486
        super(MaxPool2d, self).__init__()
487 488 489
        self.ksize = kernel_size
        self.stride = stride
        self.padding = padding
490
        self.return_indices = return_indices
491 492 493 494 495
        self.ceil_mode = ceil_mode
        self.data_format = data_format
        self.name = name

    def forward(self, x):
496
        return F.max_pool2d(
497 498 499 500
            x,
            kernel_size=self.ksize,
            stride=self.stride,
            padding=self.padding,
501
            return_indices=self.return_indices,
502 503 504 505
            data_format=self.data_format,
            name=self.name)


506
class MaxPool3d(layers.Layer):
507
    """
508
    This operation applies 3D max pooling over input features based on the input,
509
    and kernel_size, stride, padding parameters. Input(X) and Output(Out) are
510 511
    in NCDHW format, where N is batch size, C is the number of channels,
    H is the height of the feature,  D is the depth of the feature, and W is the width of the feature.
512 513

    Args:
514
        kernel_size (int|list|tuple): The pool kernel size. If the kernel size
515
            is a tuple or list, it must contain three integers,
516
            (kernel_size_Depth, kernel_size_Height, kernel_size_Width).
517
            Otherwise, the pool kernel size will be the cube of an int.
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain three integers, [stride_Depth, stride_Height, stride_Width).
            Otherwise, the pool stride size will be a cube of an int.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
        ceil_mode (bool): ${ceil_mode_comment}
        return_indices (bool): Whether to return the max indices along with the outputs.
        data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`.
533 534 535 536 537 538 539 540 541 542
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.


    Returns:None.
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
543 544 545 546 547

    Shape:
        - x: 5-D tensor.
        - out: 5-D tensor.

548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
    Examples:
        .. code-block:: python
          import paddle
          import paddle.nn as nn
          import numpy as np
          paddle.disable_static()

          # max pool3d
          input = paddle.to_tensor(np.random.uniform(-1, 1, [1, 2, 3, 32, 32]).astype(np.float32))
          MaxPool3d = nn.MaxPool3d(kernel_size=2,
                                   stride=2, padding=0)
          output = MaxPool3d(input)
          # output.shape [1, 2, 3, 16, 16]

          # for return_indices=True
          MaxPool3d = nn.MaxPool3d(kernel_size=2,stride=2, padding=0, return_indices=True)
          output, max_indices = MaxPool3d(input)
          # output.shape [1, 2, 3, 16, 16], max_indices.shape [1, 2, 3, 16, 16],
    """

    def __init__(self,
                 kernel_size,
                 stride,
                 padding,
                 return_indices=False,
                 ceil_mode=False,
                 data_format="NCDHW",
                 name=None):
        super(MaxPool3d, self).__init__()
        self.ksize = kernel_size
        self.stride = stride
        self.padding = padding
        self.return_indices = return_indices
        self.ceil_mode = ceil_mode
        self.data_format = data_format
        self.name = name

    def forward(self, x):
        return F.max_pool3d(
            x,
            kernel_size=self.ksize,
            stride=self.stride,
            padding=self.padding,
            return_indices=self.return_indices,
            data_format=self.data_format,
            name=self.name)


596
class AdaptiveAvgPool1d(layers.Layer):
597
    """
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613

    This operation applies a 1D adaptive average pooling over an input signal composed
    of several input planes, based on the input, output_size, return_indices parameters.
    Input(X) and output(Out) are in NCL format, where N is batch
    size, C is the number of channels, L is the length of the feature.
    The output tensor shape will be [N, C, output_size].

    For average adaptive pool1d:

    ..  math::

       lstart &= floor(i * L_{in} / L_{out})

       lend &= ceil((i + 1) * L_{in} / L_{out})

       Output(i) &= \\frac{sum(Input[lstart:lend])}{(lstart - lend)}
614 615

    Args:
616 617
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain one int.
618 619 620 621
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.

622 623 624
    Returns:
        None.

625
    Raises:
626 627 628 629 630 631
        ValueError: 'pool_size' should be a integer or list or tuple with length as 1.

    Shape:
        - x: 3-D tensor.
        - out: 3-D tensor.

632 633
    Examples:
        .. code-block:: python
634 635 636 637 638 639 640 641 642 643 644 645 646

          # average adaptive pool1d
          # suppose input data in shape of [N, C, L], `output_size` is m or [m],
          # output shape is [N, C, m], adaptive pool divide L dimension
          # of input data into m grids averagely and performs poolings in each
          # grid to get output.
          # adaptive max pool performs calculations as follow:
          #
          #     for i in range(m):
          #         lstart = floor(i * L / m)
          #         lend = ceil((i + 1) * L / m)
          #         output[:, :, i] = sum(input[:, :, lstart: lend])/(lstart - lend)
          #
647 648 649 650
          import paddle
          import paddle.nn as nn
          paddle.disable_static()

651 652 653 654
          data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
          AdaptiveAvgPool1d = nn.AdaptiveAvgPool1d(output_size=16)
          pool_out = AdaptiveAvgPool1d(data)
          # pool_out shape: [1, 3, 16]
655 656
    """

657 658 659
    def __init__(self, output_size, name=None):
        super(AdaptiveAvgPool1d, self).__init__()
        self.output_size = output_size
660 661
        self.name = name

662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
    def forward(self, input):
        return F.adaptive_avg_pool1d(input, self.output_size, self.name)


class AdaptiveAvgPool2d(layers.Layer):
    """

    This operation applies 2D adaptive avg pooling on input tensor. The h and w dimensions
    of the output tensor are determined by the parameter output_size.

    For avg adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}


    Parameters:
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two element, (H, W). H and W can be either a int, or None which means
            the size will be the same as that of the input.
        data_format (str): The data format of the input and output data. An optional string
            from: "NCHW", "NHWC". The default is "NCHW". When it is "NCHW", the data is stored in
            the order of: [batch_size, input_channels, input_height, input_width].
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.

    Shape:
        x (Tensor): The input tensor of adaptive avg pool2d operator, which is a 4-D tensor. The data type can be float32, float64.
        output (Tensor): The output tensor of adaptive avg pool2d operator, which is a 4-D tensor. The data type is same as input x.

    Returns:
        A callable object of AdaptiveAvgPool2d.

    Examples:
        .. code-block:: python

            # adaptive avg pool2d
            # suppose input data in shape of [N, C, H, W], `output_size` is [m, n],
            # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
            # of input data into m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive avg pool performs calculations as follow:
            #
            #     for i in range(m):
            #         for j in range(n):
            #             hstart = floor(i * H / m)
            #             hend = ceil((i + 1) * H / m)
            #             wstart = floor(i * W / n)
            #             wend = ceil((i + 1) * W / n)
            #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
            #
            import paddle
            import numpy as np
            paddle.disable_static()
            input_data = np.random.rand(2, 3, 32, 32)
            x = paddle.to_tensor(input_data)
            # x.shape is [2, 3, 32, 32]
            adaptive_avg_pool = paddle.nn.AdaptiveAvgPool2d(output_size=3)
            pool_out = adaptive_avg_pool(x = x)
            # pool_out.shape is [2, 3, 3, 3]
    """

    def __init__(self, output_size, data_format="NCHW", name=None):
        super(AdaptiveAvgPool2d, self).__init__()
        self._output_size = output_size
        self._data_format = data_format
        self._name = name

    def forward(self, x):
        return F.adaptive_avg_pool2d(
            x,
            output_size=self._output_size,
            data_format=self._data_format,
            name=self._name)


class AdaptiveAvgPool3d(layers.Layer):
    """

    This operation applies 3D adaptive avg pooling on input tensor. The h and w dimensions
    of the output tensor are determined by the parameter output_size.

    For avg adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}


    Parameters:
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain three elements, (D, H, W). D, H and W can be either a int, or None which means
            the size will be the same as that of the input.
        data_format (str): The data format of the input and output data. An optional string
            from: "NCDHW", "NDHWC". The default is "NCDHW". When it is "NCDHW", the data is stored in
            the order of: [batch_size, input_channels, input_depth, input_height, input_width].
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Shape:
        x (Tensor): The input tensor of adaptive avg pool3d operator, which is a 5-D tensor. The data type can be float32, float64.
        output (Tensor): The output tensor of adaptive avg pool3d operator, which is a 5-D tensor. The data type is same as input x.

    Returns:
        A callable object of AdaptiveAvgPool3d.

    Examples:
        .. code-block:: python

            # adaptive avg pool3d
            # suppose input data in shape of [N, C, D, H, W], `output_size` is [l, m, n],
            # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
            # of input data into l * m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive avg pool performs calculations as follow:
            #
            #     for i in range(l):
            #         for j in range(m):
            #             for k in range(n):
            #                 dstart = floor(i * D / l)
            #                 dend = ceil((i + 1) * D / l)
            #                 hstart = floor(j * H / m)
            #                 hend = ceil((j + 1) * H / m)
            #                 wstart = floor(k * W / n)
            #                 wend = ceil((k + 1) * W / n)
            #                 output[:, :, i, j, k] =
            #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
            import paddle
            import numpy as np
            paddle.disable_static()
            input_data = np.random.rand(2, 3, 8, 32, 32)
            x = paddle.to_tensor(input_data)
            # x.shape is [2, 3, 8, 32, 32]
            adaptive_avg_pool = paddle.nn.AdaptiveAvgPool3d(output_size=3)
            pool_out = adaptive_avg_pool(x = x)
            # pool_out = [2, 3, 3, 3, 3]
    """

    def __init__(self, output_size, data_format="NCDHW", name=None):
        super(AdaptiveAvgPool3d, self).__init__()
        self._output_size = output_size
        self._data_format = data_format
        self._name = name

    def forward(self, x):
        return F.adaptive_avg_pool3d(
            x,
            output_size=self._output_size,
            data_format=self._data_format,
            name=self._name)


class AdaptiveMaxPool1d(layers.Layer):
    """

    This operation applies a 1D adaptive max pooling over an input signal composed
    of several input planes, based on the input, output_size, return_indices parameters.
    Input(X) and output(Out) are in NCL format, where N is batch
    size, C is the number of channels, L is the length of the feature.
    The output tensor shape will be [N, C, output_size].

    For max adaptive pool1d:

    ..  math::

       lstart &= floor(i * L_{in} / L_{out})

       lend &= ceil((i + 1) * L_{in} / L_{out})

       Output(i) &= max(Input[lstart:lend])}

    Args:
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
             it must contain one int.
        return_indices (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type. Default False.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        None.

    Raises:
        ValueError: 'pool_size' should be a integer or list or tuple with length as 1.

    Shape:
        x (Tensor): The input tensor of adaptive max pool1d operator, which is a 3-D tensor. The data type can be float32, float64.
        output (Tensor): The output tensor of adaptive max pool1d operator, which is a 3-D tensor. The data type is same as input x.

    Examples:
        .. code-block:: python

          # max adaptive pool1d
          # suppose input data in shape of [N, C, L], `output_size` is m or [m],
          # output shape is [N, C, m], adaptive pool divide L dimension
          # of input data into m grids averagely and performs poolings in each
          # grid to get output.
          # adaptive max pool performs calculations as follow:
          #
          #     for i in range(m):
          #         lstart = floor(i * L / m)
          #         lend = ceil((i + 1) * L / m)
          #         output[:, :, i] = max(input[:, :, lstart: lend])
          #
                    import paddle
          import paddle.nn as nn
          paddle.disable_static()

          data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
          AdaptiveMaxPool1d = nn.AdaptiveMaxPool1d(output_size=16)
          pool_out = AdaptiveMaxPool1d(data)
          # pool_out shape: [1, 3, 16]

          # for return_indices = true
          AdaptiveMaxPool1d = nn.AdaptiveMaxPool1d(output_size=16, return_indices=True)
          pool_out, indices = AdaptiveMaxPool1d(data)
          # pool_out shape: [1, 3, 16], indices shape: [1, 3, 16]

    """

    def __init__(self, output_size, return_indices=False, name=None):
        super(AdaptiveMaxPool1d, self).__init__()
        self.output_size = output_size
        self.return_indices = return_indices
        self.name = name

    def forward(self, input):
        return F.adaptive_max_pool1d(input, self.output_size,
                                     self.return_indices, self.name)


class AdaptiveMaxPool2d(layers.Layer):
    """
    This operation applies 2D adaptive max pooling on input tensor. The h and w dimensions
    of the output tensor are determined by the parameter output_size. The difference between adaptive pooling and pooling is adaptive one focus on the output size.
    For adaptive max pool2d:
    ..  math::
       hstart &= floor(i * H_{in} / H_{out})
       hend &= ceil((i + 1) * H_{in} / H_{out})
       wstart &= floor(j * W_{in} / W_{out})
       wend &= ceil((j + 1) * W_{in} / W_{out})
       Output(i ,j) &= max(Input[hstart:hend, wstart:wend])
    Parameters:
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain two element, (H, W). H and W can be either a int, or None which means the size will be the same as that of the input.
        return_indices (bool): If true, the index of max pooling point will be returned along with outputs. It cannot be set in average pooling type. Default False.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Shape:
        x (Tensor): The input tensor of adaptive max pool2d operator, which is a 4-D tensor. The data type can be float32, float64.
        output (Tensor): The output tensor of adaptive max pool2d operator, which is a 4-D tensor. The data type is same as input x.
    
    Returns:
        A callable object of AdaptiveMaxPool2d.
    Examples:
        .. code-block:: python
            # adaptive max pool2d
            # suppose input data in shape of [N, C, H, W], `output_size` is [m, n],
            # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
            # of input data into m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive max pool performs calculations as follow:
            #
            #     for i in range(m):
            #         for j in range(n):
            #             hstart = floor(i * H / m)
            #             hend = ceil((i + 1) * H / m)
            #             wstart = floor(i * W / n)
            #             wend = ceil((i + 1) * W / n)
            #             output[:, :, i, j] = max(input[:, :, hstart: hend, wstart: wend])
            #
            import paddle
            import numpy as np
            paddle.disable_static()
            input_data = np.random.rand(2, 3, 32, 32)
            x = paddle.to_tensor(input_data)
            adaptive_max_pool = paddle.nn.AdaptiveMaxPool2d(output_size=3, return_indices=True)
            pool_out, indices = adaptive_max_pool(x = x)
    """

    def __init__(self, output_size, return_indices=False, name=None):
        super(AdaptiveMaxPool2d, self).__init__()
        self._output_size = output_size
        self._return_indices = return_indices
        self._name = name

    def forward(self, x):
        return F.adaptive_max_pool2d(
            x,
            output_size=self._output_size,
            return_indices=self._return_indices,
            name=self._name)


class AdaptiveMaxPool3d(layers.Layer):
    """
   This operation applies 3D adaptive max pooling on input tensor. The h and w dimensions
    of the output tensor are determined by the parameter output_size. The difference between adaptive pooling and pooling is adaptive one focus on the output size.
    For adaptive max pool3d:
    ..  math::
      dstart &= floor(i * D_{in} / D_{out})
      dend &= ceil((i + 1) * D_{in} / D_{out})
      hstart &= floor(j * H_{in} / H_{out})
      hend &= ceil((j + 1) * H_{in} / H_{out})
      wstart &= floor(k * W_{in} / W_{out})
      wend &= ceil((k + 1) * W_{in} / W_{out})
      Output(i ,j, k) &= max(Input[dstart:dend, hstart:hend, wstart:wend])
    Parameters:
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain three elements, (D, H, W). D, H and W can be either a int, or None which means
            the size will be the same as that of the input.
        return_indices (bool): If true, the index of max pooling point will be returned along with outputs. Default False.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Shape:
        x (Tensor): The input tensor of adaptive max pool3d operator, which is a 5-D tensor. The data type can be float32, float64.
        output (Tensor): The output tensor of adaptive max pool3d operator, which is a 5-D tensor. The data type is same as input x.
    Returns:
        A callable object of AdaptiveMaxPool3d.
    Examples:
        .. code-block:: python
            # adaptive max pool3d
            # suppose input data in shape of [N, C, D, H, W], `output_size` is [l, m, n],
            # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
            # of input data into l * m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive max pool performs calculations as follow:
            #
            #     for i in range(l):
            #         for j in range(m):
            #             for k in range(n):
            #                 dstart = floor(i * D / l)
            #                 dend = ceil((i + 1) * D / l)
            #                 hstart = floor(j * H / m)
            #                 hend = ceil((j + 1) * H / m)
            #                 wstart = floor(k * W / n)
            #                 wend = ceil((k + 1) * W / n)
            #                 output[:, :, i, j, k] =
            #                     max(input[:, :, dstart:dend, hstart: hend, wstart: wend])
            import paddle
            import numpy as np
            paddle.disable_static()
            input_data = np.random.rand(2, 3, 8, 32, 32)
            x = paddle.to_tensor(input_data)
            pool = paddle.nn.AdaptiveMaxPool3d(output_size=4)
            out = pool(x)
            # out shape: [2, 3, 4, 4, 4]
            pool, indices = paddle.nn.AdaptiveMaxPool3d(output_size=3, return_indices=True)
            out = pool(x)
            # out shape: [2, 3, 4, 4, 4], indices shape: [2, 3, 4, 4, 4]
            
    """

    def __init__(self, output_size, return_indices=False, name=None):
        super(AdaptiveMaxPool3d, self).__init__()
        self._output_size = output_size
        self._return_indices = return_indices
        self._name = name

    def forward(self, x):
        return F.adaptive_max_pool3d(
            x,
            output_size=self._output_size,
            return_indices=self._return_indices,
            name=self._name)