# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect from .. import framework from .. import core from ..framework import Variable, Parameter, ParamBase from .base import switch_to_static_graph import numpy as np from .math_op_patch import monkey_patch_math_varbase def monkey_patch_varbase(): @switch_to_static_graph def _to_static_var(self, to_parameter=False, **kwargs): """ **Notes**: **This API is ONLY available in Dygraph mode** Transform a VarBase into static Variable with same attributes. It's a low level interface used in dy2static and shall not be called directly. Args: to_parameter (bool): It takes effect only if the input a VarBase. If set True, the VarBase will be converted into framework.Parameters. Otherwise, it will be converted into framework.Variable. Default False. Examples: .. code-block:: python import paddle.fluid as fluid from paddle.fluid.dygraph.base import to_variable import numpy as np data = np.ones([3, 1024], dtype='float32') with fluid.dygraph.guard(): var_base = to_variable(data) static_var = var_base._to_static_var() """ # Note: getattr(self, attr, None) will call x.grad=x.gradient(), but gradient() only available in dygraph. # It will fail. So, for propery in dygraph only, should not let it getattr(self, attr, None). attr_not_need_keys = ['grad'] if isinstance(self, ParamBase): attr_kwargs = self.__dict__.copy() else: attr_names = [] for name in dir(self): if name not in attr_not_need_keys and not ( inspect.ismethod(getattr(self, name)) or name.startswith('_')): attr_names.append(name) attr_kwargs = {name: getattr(self, name) for name in attr_names} attr_keys = ['block', 'shape', 'dtype', 'type', 'name', 'persistable'] for attr in attr_keys: attr_kwargs[attr] = getattr(self, attr, None) attr_kwargs.update(kwargs) if to_parameter or isinstance(self, ParamBase): del attr_kwargs['persistable'] static_var = Parameter(**attr_kwargs) else: static_var = Variable(**attr_kwargs) return static_var # TODO(jiabin): move this to cplusplus end if we find some performance issue on it @framework.dygraph_only def set_value(self, value): """ **Notes**: **This API is ONLY available in Dygraph mode** Set a new value for this Variable. Args: value (Variable|np.ndarray): the new value. Examples: .. code-block:: python import paddle.fluid as fluid from paddle.fluid.dygraph.base import to_variable from paddle.fluid.dygraph import Linear import numpy as np data = np.ones([3, 1024], dtype='float32') with fluid.dygraph.guard(): linear = fluid.dygraph.Linear(1024, 4) t = to_variable(data) linear(t) # call with default weight custom_weight = np.random.randn(1024, 4).astype("float32") linear.weight.set_value(custom_weight) # change existing weight out = linear(t) # call with different weight """ assert isinstance(value, (np.ndarray, core.VarBase)), \ "Variable set_value function, arguments type only support Variable, numpy, VarBase" value_np = value if isinstance(value, core.VarBase): value_np = value.numpy() self_tensor_np = self.numpy() assert self_tensor_np.shape == value_np.shape, \ "Variable Shape not match, Variable [ {} ] need tensor with shape {} but load set tensor with shape {}".format( self.name, self_tensor_np.shape, value_np.shape) assert self_tensor_np.dtype == value_np.dtype, \ "Variable dtype not match, Variable [ {} ] need tensor with dtype {} but load tensor with dtype {}".format( self.name, self_tensor_np.dtype, value_np.dtype) self.value().get_tensor().set(value_np, framework._current_expected_place()) @framework.dygraph_only def backward(self, retain_graph=False): """ **Notes**: **This API is ONLY available in Dygraph mode** Run backward of current Graph which starts from current Tensor. Args: retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient. Defaults to False. Returns: NoneType: None Examples: .. code-block:: python import numpy as np import paddle paddle.disable_static() x = np.ones([2, 2], np.float32) inputs = [] for _ in range(10): tmp = paddle.to_tensor(x) # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since # there is no one need gradient on it. tmp.stop_gradient=False inputs.append(tmp) ret = paddle.sums(inputs) loss = paddle.reduce_sum(ret) loss.backward() """ if framework.in_dygraph_mode(): self._run_backward(framework._dygraph_tracer(), retain_graph) else: raise ValueError( "Variable.backward() is only available in DyGraph mode") @framework.dygraph_only def gradient(self): """ **Notes**: **This API is ONLY available in Dygraph mode** Get the Gradient of Current Variable Returns: ndarray: Numpy value of the gradient of current Variable Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np x = np.ones([2, 2], np.float32) with fluid.dygraph.guard(): inputs2 = [] for _ in range(10): tmp = fluid.dygraph.base.to_variable(x) tmp.stop_gradient=False inputs2.append(tmp) ret2 = fluid.layers.sums(inputs2) loss2 = fluid.layers.reduce_sum(ret2) loss2.backward() print(loss2.gradient()) """ if self._grad_ivar() is None: return None new_ivar = self._grad_ivar()._copy_to(core.CPUPlace(), True) if self._grad_ivar().type == core.VarDesc.VarType.SELECTED_ROWS: return (np.array(new_ivar.value().get_selected_rows().get_tensor()), np.array(new_ivar.value().get_selected_rows().rows())) else: return np.array(new_ivar.value().get_tensor()) @property def grad(self): """ The alias of gradient(). """ return self.gradient() def __str__(self): """ Convert a VarBase object to a readable string. Returns(str): A readable string. Examples: .. code-block:: python import paddle paddle.disable_static() x = paddle.rand([1, 5]) print(x) # Variable: eager_tmp_0 # - place: CUDAPlace(0) # - shape: [1, 5] # - layout: NCHW # - dtype: float # - data: [0.645307 0.597973 0.732793 0.646921 0.540328] paddle.enable_static() """ tensor = self.value().get_tensor() if tensor._is_initialized(): return 'Tensor: %s\n%s' % (self.name, str(tensor)) else: return 'Tensor: %s, not initialized' % (self.name) @property def block(self): return framework.default_main_program().global_block() def __nonzero__(self): numel = np.prod(self.shape) assert numel == 1, "When Variable is used as the condition of if/while , Variable can only contain one element." tensor = self.value().get_tensor() assert tensor._is_initialized(), "tensor not initialized" return bool(np.all(tensor.__array__() > 0)) def __bool__(self): return self.__nonzero__() for method_name, method in ( ("__bool__", __bool__), ("__nonzero__", __nonzero__), ("_to_static_var", _to_static_var), ("set_value", set_value), ("block", block), ("backward", backward), ("grad", grad), ("gradient", gradient), ("__str__", __str__), ("__repr__", __str__), ("__module__", "paddle"), ("__name__", "Tensor")): setattr(core.VarBase, method_name, method) # patch math methods for varbase monkey_patch_math_varbase()