GemmConvOp.cpp 12.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16
#include "GemmConvOp.h"
#include "GemmFunctor.h"
17 18 19 20 21 22 23 24 25 26
#include "paddle/math/MemoryHandle.h"

namespace paddle {

/*
 * imData = [input_channels, input_height, input_width]
 * colData = [input_channels, filter_height, filter_width,
 *            output_height, output_width]
 */
template <class T>
27
class Im2ColFunctor<DEVICE_TYPE_CPU, T> {
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
public:
  void operator()(const T* imData,
                  int inputChannels,
                  int inputHeight,
                  int inputWidth,
                  int filterHeight,
                  int filterWidth,
                  int strideHeight,
                  int strideWidth,
                  int paddingHeight,
                  int paddingWidth,
                  int outputHeight,
                  int outputWidth,
                  T* colData) {
    int channelsCol = inputChannels * filterHeight * filterWidth;

    for (int c = 0; c < channelsCol; ++c) {
      int wOffset = c % filterWidth;
      int hOffset = (c / filterWidth) % filterHeight;
47
      int c_im = c / filterWidth / filterHeight;
48 49
      for (int h = 0; h < outputHeight; ++h) {
        for (int w = 0; w < outputWidth; ++w) {
50 51 52 53 54 55
          int imRowIdx = h * strideHeight + hOffset;
          int imColIdx = w * strideWidth + wOffset;
          if ((imRowIdx - paddingHeight) < 0 ||
              (imRowIdx - paddingHeight) >= inputHeight ||
              (imColIdx - paddingWidth) < 0 ||
              (imColIdx - paddingWidth) >= inputWidth) {
56 57
            colData[(c * outputHeight + h) * outputWidth + w] = T(0);
          } else {
58 59
            imRowIdx += c_im * inputHeight - paddingHeight;
            imColIdx -= paddingWidth;
60
            colData[(c * outputHeight + h) * outputWidth + w] =
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
                imData[imRowIdx * inputWidth + imColIdx];
          }
        }
      }
    }
  }
};

template <class T>
class Col2ImFunctor<DEVICE_TYPE_CPU, T> {
public:
  void operator()(const T* colData,
                  int inputChannels,
                  int inputHeight,
                  int inputWidth,
                  int filterHeight,
                  int filterWidth,
                  int strideHeight,
                  int strideWidth,
                  int paddingHeight,
                  int paddingWidth,
                  int outputHeight,
                  int outputWidth,
                  T* imData) {
    int channelsCol = inputChannels * filterHeight * filterWidth;

    for (int c = 0; c < channelsCol; ++c) {
      int wOffset = c % filterWidth;
      int hOffset = (c / filterWidth) % filterHeight;
      int c_im = c / filterWidth / filterHeight;
      for (int h = 0; h < outputHeight; ++h) {
        for (int w = 0; w < outputWidth; ++w) {
          int imRowIdx = h * strideHeight + hOffset;
          int imColIdx = w * strideWidth + wOffset;
          if ((imRowIdx - paddingHeight) >= 0 &&
              (imRowIdx - paddingHeight) < inputHeight &&
              (imColIdx - paddingWidth) >= 0 &&
              (imColIdx - paddingWidth) < inputWidth) {
            imRowIdx += c_im * inputHeight - paddingHeight;
            imColIdx -= paddingWidth;
            imData[imRowIdx * inputWidth + imColIdx] +=
                colData[(c * outputHeight + h) * outputWidth + w];
103 104 105 106 107 108 109 110
          }
        }
      }
    }
  }
};

/*
111
 * \brief Forward calculation of convolution.
112 113 114 115 116 117 118 119 120
 */
template <DeviceType Device>
class GemmConvFunction : public ConvFunctionBase {
public:
  void init(const FuncConfig& config) override {
    ConvFunctionBase::init(config);
  }

  void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
    CHECK_EQ(numInputs_, inputs.size());
    CHECK_EQ(numOutputs_, outputs.size());
    // TODO(hedaoyuan): Need to define some index macros,
    // to avoid useing 0 and 1.
    const TensorShape& input = inputs[0].shape();
    const TensorShape& filter = inputs[1].shape();
    const TensorShape& output = outputs[0].shape();
    check(input, filter, output);

    real beta;
    if (outputs[0].getArgType() == ADD_TO) {
      beta = 1.0;
    } else {
      beta = 0.0;
    }
136 137 138 139 140 141

    size_t batchSize = inputs[0].shape()[0];
    size_t inputChannels = inputs[0].shape()[1];
    size_t inputHeight = inputs[0].shape()[2];
    size_t inputWidth = inputs[0].shape()[3];
    size_t filterHeight = inputs[1].shape()[2];
H
hedaoyuan 已提交
142
    size_t filterWidth = inputs[1].shape()[3];
143 144 145 146 147 148 149 150
    size_t outputChannels = outputs[0].shape()[1];
    size_t outputHeight = outputs[0].shape()[2];
    size_t outputWidth = outputs[0].shape()[3];

    real* inputData = inputs[0].data<real>();
    real* filterData = inputs[1].data<real>();
    real* outputData = outputs[0].data<real>();

151 152
    size_t size = inputChannels / groups_ * filterHeight * filterWidth *
                  outputHeight * outputWidth;
153
    resizeBuffer<Device>(size);
154 155
    real* colData = reinterpret_cast<real*>(memory_->getBuf());

156 157
    Im2ColFunctor<Device, real> im2col;
    GemmFunctor<Device, real> gemm;
158 159 160 161
    size_t inputOffset = (inputChannels / groups_) * inputHeight * inputWidth;
    size_t outputOffset =
        (outputChannels / groups_) * outputHeight * outputWidth;
    size_t filterOffset = inputs[1].shape().getElements() / groups_;
162
    for (size_t i = 0; i < batchSize; i++) {
163
      for (size_t g = 0; g < groups_; g++) {
164 165 166 167 168 169 170 171 172 173 174 175 176 177
        im2col(inputData + g * inputOffset,
               inputChannels / groups_,
               inputHeight,
               inputWidth,
               filterHeight,
               filterWidth,
               strideH(),
               strideW(),
               paddingH(),
               paddingW(),
               outputHeight,
               outputWidth,
               colData);

H
Bug fix  
hedaoyuan 已提交
178
        int M = outputChannels / groups_;
179
        int N = outputHeight * outputWidth;
H
Bug fix  
hedaoyuan 已提交
180
        int K = inputChannels / groups_ * filterHeight * filterWidth;
181 182 183
        gemm(CblasNoTrans,
             CblasNoTrans,
             M,
184 185 186 187 188 189 190
             N,
             K,
             1.0f,
             filterData + g * filterOffset,
             K,
             colData,
             N,
191
             beta,
192 193
             outputData + g * outputOffset,
             N);
194
      }
H
hedaoyuan 已提交
195 196
      inputData += inputChannels * inputHeight * inputWidth;
      outputData += outputChannels * outputHeight * outputWidth;
197 198 199 200
    }
  }
};

201 202 203 204 205 206 207 208 209 210 211 212 213
/*
 * \brief Backward input calculation of convolution.
 */
template <DeviceType Device>
class GemmConvGradInputFunction : public ConvFunctionBase {
public:
  void init(const FuncConfig& config) override {
    ConvFunctionBase::init(config);
  }

  void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
    CHECK_EQ(numInputs_, inputs.size());
    CHECK_EQ(numOutputs_, outputs.size());
214 215
    // CHECK_EQ(outputs[0].getArgType(), ADD_TO);
    const TensorShape& output = inputs[0].shape();
216
    const TensorShape& filter = inputs[1].shape();
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
    const TensorShape& input = outputs[0].shape();
    check(input, filter, output);

    size_t batchSize = input[0];
    size_t inputChannels = input[1];
    size_t inputHeight = input[2];
    size_t inputWidth = input[3];
    size_t filterHeight = filter[2];
    size_t filterWidth = filter[3];
    size_t outputChannels = output[1];
    size_t outputHeight = output[2];
    size_t outputWidth = output[3];

    real* outputGrad = inputs[0].data<real>();
    real* filterData = inputs[1].data<real>();
    real* inputGrad = outputs[0].data<real>();

    size_t size = inputChannels / groups_ * filterHeight * filterWidth *
                  outputHeight * outputWidth;
    resizeBuffer<Device>(size);
    real* colData = reinterpret_cast<real*>(memory_->getBuf());

    Col2ImFunctor<Device, real> col2im;
    GemmFunctor<Device, real> gemm;
    size_t inputOffset = (inputChannels / groups_) * inputHeight * inputWidth;
H
format  
hedaoyuan 已提交
242
    size_t outputOffset =
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
        (outputChannels / groups_) * outputHeight * outputWidth;
    size_t filterOffset = filter.getElements() / groups_;

    for (size_t i = 0; i < batchSize; i++) {
      for (size_t g = 0; g < groups_; g++) {
        int K = outputChannels / groups_;
        int N = outputHeight * outputWidth;
        int M = inputChannels / groups_ * filterHeight * filterWidth;
        gemm(CblasTrans,
             CblasNoTrans,
             M,
             N,
             K,
             1.0f,
             filterData + g * filterOffset,
             M,
             outputGrad + g * outputOffset,
             N,
             0.0f,
             colData,
             N);

        col2im(colData,
               inputChannels / groups_,
               inputHeight,
               inputWidth,
               filterHeight,
               filterWidth,
               strideH(),
               strideW(),
               paddingH(),
               paddingW(),
               outputHeight,
               outputWidth,
               inputGrad + g * inputOffset);
      }
      inputGrad += inputChannels * inputHeight * inputWidth;
      outputGrad += outputChannels * outputHeight * outputWidth;
    }
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
  }
};

/*
 * \brief Backward filter calculation of convolution.
 */
template <DeviceType Device>
class GemmConvGradFilterFunction : public ConvFunctionBase {
public:
  void init(const FuncConfig& config) override {
    ConvFunctionBase::init(config);
  }

  void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
    CHECK_EQ(numInputs_, inputs.size());
    CHECK_EQ(numOutputs_, outputs.size());
298
    const TensorShape& output = inputs[0].shape();
299
    const TensorShape& input = inputs[1].shape();
300 301 302
    const TensorShape& filter = outputs[0].shape();
    check(input, filter, output);

303 304 305 306 307 308 309
    real beta;
    if (outputs[0].getArgType() == ADD_TO) {
      beta = 1.0;
    } else {
      beta = 0.0;
    }

310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
    size_t batchSize = input[0];
    size_t inputChannels = input[1];
    size_t inputHeight = input[2];
    size_t inputWidth = input[3];
    size_t filterHeight = filter[2];
    size_t filterWidth = filter[3];
    size_t outputChannels = output[1];
    size_t outputHeight = output[2];
    size_t outputWidth = output[3];

    real* outputGrad = inputs[0].data<real>();
    real* inputData = inputs[1].data<real>();
    real* filterGrad = outputs[0].data<real>();

    size_t size = inputChannels / groups_ * filterHeight * filterWidth *
                  outputHeight * outputWidth;
    resizeBuffer<Device>(size);
    real* colData = reinterpret_cast<real*>(memory_->getBuf());

    Im2ColFunctor<Device, real> im2col;
    GemmFunctor<Device, real> gemm;
    size_t inputOffset = (inputChannels / groups_) * inputHeight * inputWidth;
    size_t outputOffset =
        (outputChannels / groups_) * outputHeight * outputWidth;
    size_t filterOffset = filter.getElements() / groups_;
    for (size_t i = 0; i < batchSize; i++) {
      for (size_t g = 0; g < groups_; g++) {
        im2col(inputData + g * inputOffset,
               inputChannels / groups_,
               inputHeight,
               inputWidth,
               filterHeight,
               filterWidth,
               strideH(),
               strideW(),
               paddingH(),
               paddingW(),
               outputHeight,
               outputWidth,
               colData);

        int M = outputChannels / groups_;
        int K = outputHeight * outputWidth;
        int N = inputChannels / groups_ * filterHeight * filterWidth;
        gemm(CblasNoTrans,
             CblasTrans,
             M,
             N,
             K,
             1.0f,
             outputGrad + g * outputOffset,
             K,
             colData,
             K,
364
             i == 0 ? beta : 1.0f,
365 366 367
             filterGrad + g * filterOffset,
             N);
      }
368 369
      inputData += inputChannels * inputHeight * inputWidth;
      outputGrad += outputChannels * outputHeight * outputWidth;
370
    }
371 372 373
  }
};

374
REGISTER_TYPED_FUNC(GemmConv, CPU, GemmConvFunction);
375 376
REGISTER_TYPED_FUNC(GemmConvGradInput, CPU, GemmConvGradInputFunction);
REGISTER_TYPED_FUNC(GemmConvGradFilter, CPU, GemmConvGradFilterFunction);
H
hedaoyuan 已提交
377
#ifndef PADDLE_ONLY_CPU
378
REGISTER_TYPED_FUNC(GemmConv, GPU, GemmConvFunction);
379 380
REGISTER_TYPED_FUNC(GemmConvGradInput, GPU, GemmConvGradInputFunction);
REGISTER_TYPED_FUNC(GemmConvGradFilter, GPU, GemmConvGradFilterFunction);
H
hedaoyuan 已提交
381
#endif
382 383

}  // namespace paddle