GemmConvOp.cpp 9.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16
#include "GemmConvOp.h"
#include "GemmFunctor.h"
17 18 19 20 21 22 23 24 25 26
#include "paddle/math/MemoryHandle.h"

namespace paddle {

/*
 * imData = [input_channels, input_height, input_width]
 * colData = [input_channels, filter_height, filter_width,
 *            output_height, output_width]
 */
template <class T>
27
class Im2ColFunctor<DEVICE_TYPE_CPU, T> {
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
public:
  void operator()(const T* imData,
                  int inputChannels,
                  int inputHeight,
                  int inputWidth,
                  int filterHeight,
                  int filterWidth,
                  int strideHeight,
                  int strideWidth,
                  int paddingHeight,
                  int paddingWidth,
                  int outputHeight,
                  int outputWidth,
                  T* colData) {
    int channelsCol = inputChannels * filterHeight * filterWidth;

    for (int c = 0; c < channelsCol; ++c) {
      int wOffset = c % filterWidth;
      int hOffset = (c / filterWidth) % filterHeight;
      int c_im = c / filterHeight / filterWidth;
      for (int h = 0; h < outputHeight; ++h) {
        for (int w = 0; w < outputWidth; ++w) {
          // no c_im*height to Exclude the channel number
          int imgRowIdx = h * strideHeight + hOffset;
          int imgColIdx = w * strideWidth + wOffset;
          if ((imgRowIdx - paddingHeight) < 0 ||
              (imgRowIdx - paddingHeight) >= inputHeight ||
              (imgColIdx - paddingWidth) < 0 ||
              (imgColIdx - paddingWidth) >= inputWidth) {
            colData[(c * outputHeight + h) * outputWidth + w] = T(0);
          } else {
            imgRowIdx += c_im * inputHeight - paddingHeight;
            imgColIdx -= paddingWidth;
            colData[(c * outputHeight + h) * outputWidth + w] =
                imData[imgRowIdx * inputWidth + imgColIdx];
          }
        }
      }
    }
  }
};

/*
71
 * \brief Forward calculation of convolution.
72 73 74 75 76 77 78 79 80
 */
template <DeviceType Device>
class GemmConvFunction : public ConvFunctionBase {
public:
  void init(const FuncConfig& config) override {
    ConvFunctionBase::init(config);
  }

  void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
    CHECK_EQ(numInputs_, inputs.size());
    CHECK_EQ(numOutputs_, outputs.size());
    // TODO(hedaoyuan): Need to define some index macros,
    // to avoid useing 0 and 1.
    const TensorShape& input = inputs[0].shape();
    const TensorShape& filter = inputs[1].shape();
    const TensorShape& output = outputs[0].shape();
    check(input, filter, output);

    real beta;
    if (outputs[0].getArgType() == ADD_TO) {
      beta = 1.0;
    } else {
      beta = 0.0;
    }
96 97 98 99 100 101

    size_t batchSize = inputs[0].shape()[0];
    size_t inputChannels = inputs[0].shape()[1];
    size_t inputHeight = inputs[0].shape()[2];
    size_t inputWidth = inputs[0].shape()[3];
    size_t filterHeight = inputs[1].shape()[2];
H
hedaoyuan 已提交
102
    size_t filterWidth = inputs[1].shape()[3];
103 104 105 106 107 108 109 110
    size_t outputChannels = outputs[0].shape()[1];
    size_t outputHeight = outputs[0].shape()[2];
    size_t outputWidth = outputs[0].shape()[3];

    real* inputData = inputs[0].data<real>();
    real* filterData = inputs[1].data<real>();
    real* outputData = outputs[0].data<real>();

111 112
    size_t size = inputChannels / groups_ * filterHeight * filterWidth *
                  outputHeight * outputWidth;
113
    resizeBuffer<Device>(size);
114 115
    real* colData = reinterpret_cast<real*>(memory_->getBuf());

116 117
    Im2ColFunctor<Device, real> im2col;
    GemmFunctor<Device, real> gemm;
118 119 120 121
    size_t inputOffset = (inputChannels / groups_) * inputHeight * inputWidth;
    size_t outputOffset =
        (outputChannels / groups_) * outputHeight * outputWidth;
    size_t filterOffset = inputs[1].shape().getElements() / groups_;
122
    for (size_t i = 0; i < batchSize; i++) {
123
      for (size_t g = 0; g < groups_; g++) {
124 125 126 127 128 129 130 131 132 133 134 135 136 137
        im2col(inputData + g * inputOffset,
               inputChannels / groups_,
               inputHeight,
               inputWidth,
               filterHeight,
               filterWidth,
               strideH(),
               strideW(),
               paddingH(),
               paddingW(),
               outputHeight,
               outputWidth,
               colData);

H
Bug fix  
hedaoyuan 已提交
138
        int M = outputChannels / groups_;
139
        int N = outputHeight * outputWidth;
H
Bug fix  
hedaoyuan 已提交
140
        int K = inputChannels / groups_ * filterHeight * filterWidth;
141 142 143
        gemm(CblasNoTrans,
             CblasNoTrans,
             M,
144 145 146 147 148 149 150
             N,
             K,
             1.0f,
             filterData + g * filterOffset,
             K,
             colData,
             N,
151
             beta,
152 153
             outputData + g * outputOffset,
             N);
154
      }
H
hedaoyuan 已提交
155 156
      inputData += inputChannels * inputHeight * inputWidth;
      outputData += outputChannels * outputHeight * outputWidth;
157 158 159 160
    }
  }
};

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
/*
 * \brief Backward input calculation of convolution.
 */
template <DeviceType Device>
class GemmConvGradInputFunction : public ConvFunctionBase {
public:
  void init(const FuncConfig& config) override {
    ConvFunctionBase::init(config);
  }

  void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
    CHECK_EQ(numInputs_, inputs.size());
    CHECK_EQ(numOutputs_, outputs.size());
    const TensorShape& outputGrad = inputs[0].shape();
    const TensorShape& filter = inputs[1].shape();
    const TensorShape& inputGrad = outputs[0].shape();
    check(inputGrad, filter, outputGrad);
  }
};

/*
 * \brief Backward filter calculation of convolution.
 */
template <DeviceType Device>
class GemmConvGradFilterFunction : public ConvFunctionBase {
public:
  void init(const FuncConfig& config) override {
    ConvFunctionBase::init(config);
  }

  void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
    CHECK_EQ(numInputs_, inputs.size());
    CHECK_EQ(numOutputs_, outputs.size());
194 195
    CHECK_EQ(outputs[0].getArgType(), ASSIGN_TO);
    const TensorShape& output = inputs[0].shape();
196
    const TensorShape& input = inputs[1].shape();
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
    const TensorShape& filter = outputs[0].shape();
    check(input, filter, output);

    size_t batchSize = input[0];
    size_t inputChannels = input[1];
    size_t inputHeight = input[2];
    size_t inputWidth = input[3];
    size_t filterHeight = filter[2];
    size_t filterWidth = filter[3];
    size_t outputChannels = output[1];
    size_t outputHeight = output[2];
    size_t outputWidth = output[3];

    real* outputGrad = inputs[0].data<real>();
    real* inputData = inputs[1].data<real>();
    real* filterGrad = outputs[0].data<real>();

    size_t size = inputChannels / groups_ * filterHeight * filterWidth *
                  outputHeight * outputWidth;
    resizeBuffer<Device>(size);
    real* colData = reinterpret_cast<real*>(memory_->getBuf());

    Im2ColFunctor<Device, real> im2col;
    GemmFunctor<Device, real> gemm;
    size_t inputOffset = (inputChannels / groups_) * inputHeight * inputWidth;
    size_t outputOffset =
        (outputChannels / groups_) * outputHeight * outputWidth;
    size_t filterOffset = filter.getElements() / groups_;
    for (size_t i = 0; i < batchSize; i++) {
      for (size_t g = 0; g < groups_; g++) {
        im2col(inputData + g * inputOffset,
               inputChannels / groups_,
               inputHeight,
               inputWidth,
               filterHeight,
               filterWidth,
               strideH(),
               strideW(),
               paddingH(),
               paddingW(),
               outputHeight,
               outputWidth,
               colData);

        int M = outputChannels / groups_;
        int K = outputHeight * outputWidth;
        int N = inputChannels / groups_ * filterHeight * filterWidth;
        gemm(CblasNoTrans,
             CblasTrans,
             M,
             N,
             K,
             1.0f,
             outputGrad + g * outputOffset,
             K,
             colData,
             K,
             1.0f,
             filterGrad + g * filterOffset,
             N);
      }
258 259
      inputData += inputChannels * inputHeight * inputWidth;
      outputGrad += outputChannels * outputHeight * outputWidth;
260
    }
261 262 263
  }
};

264
REGISTER_TYPED_FUNC(GemmConv, CPU, GemmConvFunction);
265 266
REGISTER_TYPED_FUNC(GemmConvGradInput, CPU, GemmConvGradInputFunction);
REGISTER_TYPED_FUNC(GemmConvGradFilter, CPU, GemmConvGradFilterFunction);
H
hedaoyuan 已提交
267
#ifndef PADDLE_ONLY_CPU
268
REGISTER_TYPED_FUNC(GemmConv, GPU, GemmConvFunction);
269 270
REGISTER_TYPED_FUNC(GemmConvGradInput, GPU, GemmConvGradInputFunction);
REGISTER_TYPED_FUNC(GemmConvGradFilter, GPU, GemmConvGradFilterFunction);
H
hedaoyuan 已提交
271
#endif
272 273

}  // namespace paddle