argsort_op.h 8.9 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <algorithm>
#include <utility>
#include <vector>
19
#include "paddle/fluid/framework/eigen.h"
Y
Yibing Liu 已提交
20
#include "paddle/fluid/framework/op_registry.h"
21
#include "paddle/fluid/operators/transpose_op.h"
Y
Yibing Liu 已提交
22 23 24 25

namespace paddle {
namespace operators {

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

using Tensor = framework::Tensor;

template <typename T, typename Type>
static void FullSort(Type input_height, Type input_width, int input_dim,
                     const framework::Tensor* input, T* t_out, Type* t_indices,
                     bool descending) {
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
  for (Type i = 0; i < input_height; ++i) {
    std::vector<std::pair<T, Type>> col_vec;
    col_vec.reserve(input_width);
    if (input_dim == 1) {
      auto e_input = EigenVector<T>::Flatten(*input);
      for (Type j = 0; j < input_width; ++j) {
        col_vec.push_back(std::pair<T, Type>(e_input(j), j));
      }
    } else {
      auto e_input = EigenMatrix<T>::Reshape(*input, input_dim - 1);
      for (Type j = 0; j < input_width; ++j) {
        col_vec.push_back(std::pair<T, Type>(e_input(i, j), j));
      }
    }
    std::sort(col_vec.begin(), col_vec.end(),
              [&](const std::pair<T, Type>& l, const std::pair<T, Type>& r) {
                if (descending)
                  return l.first > r.first;
                else
                  return l.first < r.first;
              });

    for (Type j = 0; j < input_width; ++j) {
      t_out[i * input_width + j] = col_vec[j].first;
      t_indices[i * input_width + j] = col_vec[j].second;
    }
  }
}
71 72 73 74 75 76 77 78 79 80 81 82 83

template <typename T, typename Type>
static void FullAssign(Type input_height, Type input_width, int input_dim,
                       const framework::Tensor* input,
                       const framework::Tensor* indices, T* t_out) {
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
  for (Type i = 0; i < input_height; ++i) {
    if (input_dim == 1) {
      auto e_input = EigenVector<T>::Flatten(*input);
      auto e_indices = EigenVector<Type>::Flatten(*indices);
      for (Type j = 0; j < input_width; ++j) {
84
        t_out[i * input_width + e_indices(j)] = e_input(j);
85 86 87 88 89
      }
    } else {
      auto e_input = EigenMatrix<T>::Reshape(*input, input_dim - 1);
      auto e_indices = EigenMatrix<Type>::Reshape(*indices, input_dim - 1);
      for (Type j = 0; j < input_width; ++j) {
90
        t_out[i * input_width + e_indices(i, j)] = e_input(i, j);
91 92 93 94 95
      }
    }
  }
}

Y
Yibing Liu 已提交
96 97 98 99
template <typename DeviceContext, typename T>
class ArgsortKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
Y
Yibing Liu 已提交
100 101 102
    auto* input = ctx.Input<framework::Tensor>("X");
    auto* output = ctx.Output<framework::Tensor>("Out");
    auto* indices = ctx.Output<framework::Tensor>("Indices");
Y
Yibing Liu 已提交
103
    int axis = ctx.Attr<int>("axis");
104
    bool descending = ctx.Attr<bool>("descending");
Y
Yibing Liu 已提交
105 106

    auto in_dims = input->dims();
107
    axis = (axis < 0) ? (in_dims.size() + axis) : axis;
Y
Yibing Liu 已提交
108 109

    T* out_data = output->mutable_data<T>(ctx.GetPlace());
Y
Yibing Liu 已提交
110

111 112 113 114 115
    // Do full sort
    if (axis == -1 || axis + 1 == in_dims.size()) {
      const int64_t input_height = framework::product(
          framework::slice_ddim(in_dims, 0, in_dims.size() - 1));
      const int64_t input_width = in_dims[in_dims.size() - 1];
Y
Yibing Liu 已提交
116

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
      int64_t* ids_data = indices->mutable_data<int64_t>(ctx.GetPlace());
      FullSort<T, int64_t>(input_height, input_width, in_dims.size(), input,
                           out_data, ids_data, descending);
    } else {
      // If not full sort do transpose
      std::vector<int> trans;
      for (int i = 0; i < axis; i++) {
        trans.push_back(i);
      }
      trans.push_back(in_dims.size() - 1);
      for (int i = axis + 1; i < in_dims.size() - 1; i++) {
        trans.push_back(i);
      }
      trans.push_back(axis);
      framework::DDim trans_dims(in_dims);
132
      for (size_t i = 0; i < trans.size(); i++) {
133
        trans_dims[i] = in_dims[trans[i]];
Y
Yibing Liu 已提交
134 135
      }

136 137 138 139 140 141 142
      Tensor trans_inp;
      trans_inp.mutable_data<T>(trans_dims, ctx.GetPlace());
      int ndims = trans.size();
      auto& dev_ctx = ctx.template device_context<platform::CPUDeviceContext>();
      // Do transpose
      TransCompute<platform::CPUDeviceContext, T>(ndims, dev_ctx, *input,
                                                  &trans_inp, trans);
Y
Yibing Liu 已提交
143

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
      const int64_t input_height = framework::product(
          framework::slice_ddim(trans_dims, 0, trans_dims.size() - 1));
      const int64_t input_width = trans_dims[trans_dims.size() - 1];

      Tensor tmp_out;
      T* t_out = tmp_out.mutable_data<T>(trans_dims, ctx.GetPlace());
      output->mutable_data<T>(ctx.GetPlace());

      Tensor tmp_indices;

      auto* t_ind =
          tmp_indices.mutable_data<int64_t>(trans_dims, ctx.GetPlace());

      FullSort<T, int64_t>(input_height, input_width, in_dims.size(),
                           &trans_inp, t_out, t_ind, descending);

      indices->mutable_data<int64_t>(ctx.GetPlace());
      TransCompute<platform::CPUDeviceContext, int64_t>(
          ndims, dev_ctx, tmp_indices, indices, trans);
      // transpose back
      TransCompute<platform::CPUDeviceContext, T>(ndims, dev_ctx, tmp_out,
                                                  output, trans);
Y
Yibing Liu 已提交
166 167 168 169
    }
  }
};

170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
template <typename DeviceContext, typename T>
class ArgsortGradientKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* indices = ctx.Input<Tensor>("Indices");
    auto* dX = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dO = ctx.Input<Tensor>(framework::GradVarName("Out"));
    int axis = ctx.Attr<int>("axis");

    auto in_dims = indices->dims();
    axis = (axis < 0) ? (in_dims.size() + axis) : axis;

    dX->mutable_data<T>(ctx.GetPlace());
    auto dxt = framework::EigenVector<T>::Flatten(*dX);
    auto& place = *ctx.template device_context<platform::CPUDeviceContext>()
                       .eigen_device();
    dxt.device(place) = dxt.constant(static_cast<T>(0));
    if (dO->numel() == 0) return;

    // Do full assign
    if (axis == -1 || axis + 1 == in_dims.size()) {
      const int64_t input_height = framework::product(
          framework::slice_ddim(in_dims, 0, in_dims.size() - 1));
      const int64_t input_width = in_dims[in_dims.size() - 1];

      FullAssign<T, int64_t>(input_height, input_width, in_dims.size(), dO,
                             indices, dX->data<T>());
    } else {
      // If not full assign do transpose
      std::vector<int> trans;
      for (int i = 0; i < axis; i++) {
        trans.push_back(i);
      }
      trans.push_back(in_dims.size() - 1);
      for (int i = axis + 1; i < in_dims.size() - 1; i++) {
        trans.push_back(i);
      }
      trans.push_back(axis);
      framework::DDim trans_dims(in_dims);
      for (size_t i = 0; i < trans.size(); i++) {
        trans_dims[i] = in_dims[trans[i]];
      }

      Tensor trans_dO;
      trans_dO.mutable_data<T>(trans_dims, ctx.GetPlace());
      Tensor trans_ind;
      trans_ind.mutable_data<int64_t>(trans_dims, ctx.GetPlace());
      int ndims = trans.size();
      auto& dev_ctx = ctx.template device_context<platform::CPUDeviceContext>();
      // Do transpose
      TransCompute<platform::CPUDeviceContext, T>(ndims, dev_ctx, *dO,
                                                  &trans_dO, trans);
      TransCompute<platform::CPUDeviceContext, int64_t>(
          ndims, dev_ctx, *indices, &trans_ind, trans);

      const int64_t input_height = framework::product(
          framework::slice_ddim(trans_dims, 0, trans_dims.size() - 1));
      const int64_t input_width = trans_dims[trans_dims.size() - 1];

      Tensor tmp_out;
      T* t_out = tmp_out.mutable_data<T>(trans_dims, ctx.GetPlace());

      FullAssign<T, int64_t>(input_height, input_width, in_dims.size(),
                             &trans_dO, &trans_ind, t_out);

      // transpose back
      TransCompute<platform::CPUDeviceContext, T>(ndims, dev_ctx, tmp_out, dX,
                                                  trans);
    }
  }
};

Y
Yibing Liu 已提交
242 243
}  // namespace operators
}  // namespace paddle