argsort_op.h 2.7 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <algorithm>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
class ArgsortKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
Y
Yibing Liu 已提交
28 29 30
    auto* input = ctx.Input<framework::Tensor>("X");
    auto* output = ctx.Output<framework::Tensor>("Out");
    auto* indices = ctx.Output<framework::Tensor>("Indices");
Y
Yibing Liu 已提交
31 32 33
    int axis = static_cast<int>(ctx.Attr<int>("axis"));

    auto in_dims = input->dims();
34
    axis = (axis < 0) ? (in_dims.size() + axis) : axis;
Y
Yibing Liu 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78

    const T* in_data = input->data<T>();
    T* out_data = output->mutable_data<T>(ctx.GetPlace());
    int64_t* idx_data = indices->mutable_data<int64_t>(ctx.GetPlace());

    int64_t part_dims_prod = input->numel() / in_dims[axis];
    for (int64_t i = 0; i < part_dims_prod; ++i) {
      int64_t idx = i;
      std::vector<int64_t> idx_vec(in_dims.size(), 0);
      for (int64_t dim = in_dims.size() - 1; dim >= 0; --dim) {
        if (dim != axis) {
          idx_vec[dim] = idx % in_dims[dim];
          idx /= in_dims[dim];
        }
      }
      std::vector<std::pair<T, int64_t>> in_vec;
      std::vector<int64_t> org_index_vec(in_dims[axis], 0);
      for (int64_t j = 0; j < in_dims[axis]; ++j) {
        idx_vec[axis] = j;
        int64_t index = idx_vec[0];
        for (int64_t dim = 0; dim < in_dims.size() - 1; ++dim) {
          index = index * in_dims[dim + 1] + idx_vec[dim + 1];
        }
        in_vec.push_back(std::pair<T, int64_t>(in_data[index], j));
        org_index_vec[j] = index;
      }

      std::sort(
          in_vec.begin(), in_vec.end(),
          [](const std::pair<T, int64_t>& v1, const std::pair<T, int64_t>& v2) {
            return v1.first < v2.first;
          });

      for (size_t j = 0; j < org_index_vec.size(); ++j) {
        int64_t index = org_index_vec[j];
        out_data[index] = in_vec[j].first;
        idx_data[index] = in_vec[j].second;
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle