conv_transpose_op.cc 13.7 KB
Newer Older
C
chengduoZH 已提交
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
chengduoZH 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
chengduoZH 已提交
14

C
chengduoZH 已提交
15
#include "paddle/operators/conv_transpose_op.h"
C
chengduoZH 已提交
16 17 18 19

namespace paddle {
namespace operators {

C
chengduoZH 已提交
20
void ConvTransposeOp::InferShape(framework::InferShapeContext* ctx) const {
C
chengduoZH 已提交
21
  PADDLE_ENFORCE(ctx->HasInput("Input"),
C
chengduoZH 已提交
22
                 "Input(Input) of ConvTransposeOp should not be null.");
C
chengduoZH 已提交
23
  PADDLE_ENFORCE(ctx->HasInput("Filter"),
C
chengduoZH 已提交
24
                 "Input(Filter) of ConvTransposeOp should not be null.");
C
chengduoZH 已提交
25
  PADDLE_ENFORCE(ctx->HasOutput("Output"),
C
chengduoZH 已提交
26
                 "Output(Output) of ConvTransposeOp should not be null.");
C
chengduoZH 已提交
27 28 29 30 31

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
C
chengduoZH 已提交
32
  std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
C
chengduoZH 已提交
33

C
chengduoZH 已提交
34 35 36 37 38 39 40 41 42
  PADDLE_ENFORCE(in_dims.size() == 4 || in_dims.size() == 5,
                 "ConvTransposeOp intput should be 4-D or 5-D tensor.");
  PADDLE_ENFORCE_EQ(in_dims.size(), filter_dims.size(),
                    "ConvTransposeOp input dimension and filter dimension "
                    "should be the same.");
  PADDLE_ENFORCE(in_dims.size() - strides.size() == 2U,
                 "ConvTransposeOp input dimension and strides dimension should "
                 "be consistent.");
  PADDLE_ENFORCE_EQ(paddings.size(), strides.size(),
C
chengduoZH 已提交
43
                    "ConvTransposeOp paddings dimension and strides "
C
chengduoZH 已提交
44
                    "dimension should be the same.");
C
chengduoZH 已提交
45 46 47
  PADDLE_ENFORCE_EQ(paddings.size(), dilations.size(),
                    "ConvTransposeOp paddings dimension and dilations "
                    "dimension should be the same.");
C
chengduoZH 已提交
48 49 50
  PADDLE_ENFORCE_EQ(in_dims[1], filter_dims[0],
                    "In ConvTransposeOp, The input channel should be the same "
                    "as the number of filters.");
C
chengduoZH 已提交
51

C
chengduoZH 已提交
52
  std::vector<int64_t> output_shape({in_dims[0], filter_dims[1]});
C
chengduoZH 已提交
53
  for (size_t i = 0; i < strides.size(); ++i) {
C
chengduoZH 已提交
54
    auto filter_extent = dilations[i] * (filter_dims[i + 2] - 1) + 1;
C
chengduoZH 已提交
55
    output_shape.push_back((in_dims[i + 2] - 1) * strides[i] - 2 * paddings[i] +
C
chengduoZH 已提交
56
                           filter_extent);
C
chengduoZH 已提交
57
  }
C
chengduoZH 已提交
58
  ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
C
chengduoZH 已提交
59 60
}

61 62 63
framework::OpKernelType ConvTransposeOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  bool use_cudnn = ctx.Attr<bool>("use_cudnn");
64
  use_cudnn &= platform::dynload::HasCUDNN();
65 66 67 68 69 70 71 72 73 74 75 76 77 78
  framework::LibraryType library_;
  if (use_cudnn) {
    library_ = framework::LibraryType::kCUDNN;
  } else {
    library_ = framework::LibraryType::kPlain;
  }

  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<Tensor>("Input")->type()), ctx.GetPlace(),
      layout_, library_);
}

79 80
Conv2DTransposeOpMaker::Conv2DTransposeOpMaker(OpProto* proto,
                                               OpAttrChecker* op_checker)
C
chengduoZH 已提交
81 82 83 84 85
    : OpProtoAndCheckerMaker(proto, op_checker) {
  AddInput(
      "Input",
      "(Tensor) The input tensor of convolution transpose operator. "
      "The format of input tensor is NCHW. Where N is batch size, C is the "
C
chengduoZH 已提交
86 87
      "number of input channels, H is the height of the feature, and "
      "W is the width of the feature.");
C
chengduoZH 已提交
88 89 90 91 92 93 94 95
  AddInput(
      "Filter",
      "(Tensor) The filter tensor of convolution transpose operator. "
      "The format of the filter tensor is MCHW, where M is the number of "
      "input feature channels, C is the number of "
      "output feature channels,"
      "H is the height of the filter, and W is the width of the filter. "
      "We enforce groups number == 1 in the convolution transpose scenario.");
C
chengduoZH 已提交
96
  AddOutput("Output",
C
chengduoZH 已提交
97
            "(Tensor) The output tensor of convolution transpose operator. "
C
chengduoZH 已提交
98
            "The format of output tensor is also NCHW.");
C
chengduoZH 已提交
99 100 101 102 103 104

  AddAttr<std::vector<int>>("dilations",
                            "(vector<int> default:{1, 1}), the "
                            "dilations(h_dilation, w_dilation) of convolution "
                            "transpose operator.")
      .SetDefault({1, 1});
C
chengduoZH 已提交
105 106
  AddAttr<std::vector<int>>(
      "strides",
C
chengduoZH 已提交
107
      "(vector<int> default:{1, 1}), the strides(h_stride, w_stride) of "
108
      "convolution transpose operator.")
C
chengduoZH 已提交
109
      .SetDefault({1, 1});
C
chengduoZH 已提交
110 111
  AddAttr<std::vector<int>>(
      "paddings",
C
chengduoZH 已提交
112
      "(vector<int> default:{0, 0}), the paddings(h_pad, w_pad) of convolution "
C
chengduoZH 已提交
113
      "transpose operator.")
C
chengduoZH 已提交
114
      .SetDefault({0, 0});
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Used in cudnn kernel only. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardward. This size should be carefully setted.")
      .SetDefault(4096);
C
chengduoZH 已提交
134
  AddComment(R"DOC(
C
chengduoZH 已提交
135 136
Convolution2D Transpose Operator.

C
chengduoZH 已提交
137
The convolution transpose operation calculates the output based on the input, filter
C
chengduoZH 已提交
138
and dilations, strides, paddings, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
139
parameters is checked in the infer-shape.
C
chengduoZH 已提交
140 141 142 143 144 145 146
Input(Input) and output(Output) are in NCHW format. Where N is batchsize, C is the
number of channels, H is the height of the feature, and W is the width of the feature.
Filter(Input) is in MCHW format. Where M is the number of input feature channels,
C is the number of output feature channels, H is the height of the filter,
and W is the width of the filter.
Parameters(strides, paddings) are two elements. These two elements represent height
and width, respectively.
C
chengduoZH 已提交
147
The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
148

C
chengduoZH 已提交
149 150
Example:
  Input:
C
chengduoZH 已提交
151 152
       Input shape: $(N, C_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{in}, C_{out}, H_f, W_f)$
C
chengduoZH 已提交
153
  Output:
C
chengduoZH 已提交
154 155 156 157 158 159
       Output shape: $(N, C_{out}, H_{out}, W_{out})$
  Where
  $$
       H_{out} = (H_{in} - 1) * strides[0] - 2 * paddings[0] + H_f \\
       W_{out} = (W_{in} - 1) * strides[1] - 2 * paddings[1] + W_f
  $$
C
chengduoZH 已提交
160 161 162
)DOC");
}

163 164
Conv3DTransposeOpMaker::Conv3DTransposeOpMaker(OpProto* proto,
                                               OpAttrChecker* op_checker)
C
chengduoZH 已提交
165
    : OpProtoAndCheckerMaker(proto, op_checker) {
C
chengduoZH 已提交
166 167 168 169 170 171
  AddInput("Input",
           "(Tensor) The input tensor of convolution transpose operator."
           "The format of input tensor is NCDHW. Where N is batch size, C is "
           "the number of channels, D is the depth of the feature, H is the "
           "height of the feature, and "
           "W is the width of the feature.");
C
chengduoZH 已提交
172 173
  AddInput("Filter",
           "(Tensor) The filter tensor of convolution transpose operator."
C
chengduoZH 已提交
174 175 176
           "The format of the filter tensor is MCDHW, where M is the number of "
           "input feature channels, C is the number of "
           "output feature channels, D "
C
chengduoZH 已提交
177 178
           "is the depth of the filter, H is the height of the filter, and "
           "W is the width of the filter."
C
chengduoZH 已提交
179
           "We enforce groups number == 1 and padding == 0 in "
C
chengduoZH 已提交
180
           "the convolution3d transpose scenario.");
C
chengduoZH 已提交
181 182 183 184
  AddOutput("Output",
            "(Tensor) The output tensor of convolution transpose operator."
            "The format of output tensor is also NCDHW."
            "Where N is batch size, C is "
C
chengduoZH 已提交
185 186
            "the number of channels, D is the depth of the feature, H is the "
            "height of the feature, and W is the width of the feature.");
C
chengduoZH 已提交
187 188 189 190 191 192 193

  AddAttr<std::vector<int>>(
      "dilations",
      "(vector<int> default:{1, 1, 1}), the "
      "dilations(d_dilation,h_dilation, w_dilation) of convolution "
      "transpose operator.")
      .SetDefault({1, 1, 1});
C
chengduoZH 已提交
194
  AddAttr<std::vector<int>>("strides",
C
chengduoZH 已提交
195
                            "(vector<int> default:{1, 1, 1}), the "
196
                            "strides{d_stride, h_stride, w_stride} of "
C
chengduoZH 已提交
197
                            "convolution transpose operator.")
C
chengduoZH 已提交
198
      .SetDefault({1, 1, 1});
C
chengduoZH 已提交
199
  AddAttr<std::vector<int>>("paddings",
C
chengduoZH 已提交
200
                            "(vector<int> default:{0, 0, 0}), paddings(d_pad, "
C
chengduoZH 已提交
201
                            "h_pad, w_pad) of convolution transpose operator.")
C
chengduoZH 已提交
202
      .SetDefault({0, 0, 0});
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Used in cudnn kernel only. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardward. This size should be carefully setted.")
      .SetDefault(4096);
C
chengduoZH 已提交
222
  AddComment(R"DOC(
C
chengduoZH 已提交
223 224
Convolution3D Transpose Operator.

C
chengduoZH 已提交
225
The convolution transpose operation calculates the output based on the input, filter
C
chengduoZH 已提交
226
and dilations, strides, paddings, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
227
parameters is checked in the infer-shape.
C
chengduoZH 已提交
228 229 230 231 232 233 234 235
Input(Input) and output(Output) are in NCDHW format. Where N is batch size, C is the
number of channels, D is the depth of the feature, H is the height of the feature,
and W is the width of the feature.
Filter(Input) is in MCDHW format. Where M is the number of input feature channels,
C is the number of output feature channels, D is the depth of the filter,H is the
height of the filter, and W is the width of the filter.
Parameters(strides, paddings) are three elements. These three elements represent
depth, height and width, respectively.
C
chengduoZH 已提交
236
The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
237 238

Example:   
C
chengduoZH 已提交
239
  Input:
C
chengduoZH 已提交
240 241
       Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{in}, C_{out}, D_f, H_f, W_f)$
C
chengduoZH 已提交
242
  Output:
C
chengduoZH 已提交
243 244 245 246 247 248 249
       Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
  Where
  $$
       D_{out} = (D_{in} - 1) * strides[0] - 2 * paddings[0] + D_f \\
       H_{out} = (H_{in} - 1) * strides[1] - 2 * paddings[1] + H_f \\
       W_{out} = (W_{in} - 1) * strides[2] - 2 * paddings[2] + W_f
  $$
C
chengduoZH 已提交
250 251 252
)DOC");
}

C
chengduoZH 已提交
253
void ConvTransposeOpGrad::InferShape(framework::InferShapeContext* ctx) const {
C
chengduoZH 已提交
254 255 256 257 258 259 260 261 262 263
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

264 265 266
framework::OpKernelType ConvTransposeOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  bool use_cudnn = ctx.Attr<bool>("use_cudnn");
267
  use_cudnn &= platform::dynload::HasCUDNN();
268 269 270 271 272 273 274 275 276 277 278 279 280 281
  framework::LibraryType library_;
  if (use_cudnn) {
    library_ = framework::LibraryType::kCUDNN;
  } else {
    library_ = framework::LibraryType::kPlain;
  }

  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<Tensor>("Input")->type()), ctx.GetPlace(),
      layout_, library_);
}

C
chengduoZH 已提交
282 283 284 285
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
C
chengduoZH 已提交
286

C
chengduoZH 已提交
287 288
REGISTER_OP(conv2d_transpose, ops::ConvTransposeOp, ops::Conv2DTransposeOpMaker,
            conv2d_transpose_grad, ops::ConvTransposeOpGrad);
C
chengduoZH 已提交
289 290

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
291
    conv2d_transpose,
Q
QI JUN 已提交
292 293
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
294
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
295
    conv2d_transpose_grad,
Q
QI JUN 已提交
296 297 298
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext,
                                     double>);
C
chengduoZH 已提交
299

C
chengduoZH 已提交
300 301
REGISTER_OP(conv3d_transpose, ops::ConvTransposeOp, ops::Conv3DTransposeOpMaker,
            conv3d_transpose_grad, ops::ConvTransposeOpGrad);
C
chengduoZH 已提交
302 303

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
304
    conv3d_transpose,
Q
QI JUN 已提交
305 306
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
307
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
308
    conv3d_transpose_grad,
Q
QI JUN 已提交
309 310 311
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext,
                                     double>);