conv_transpose_op.cc 8.4 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

C
chengduoZH 已提交
15
#include "paddle/operators/conv_transpose_op.h"
C
chengduoZH 已提交
16 17 18 19

namespace paddle {
namespace operators {

C
chengduoZH 已提交
20
void ConvTransposeOp::InferShape(framework::InferShapeContext* ctx) const {
C
chengduoZH 已提交
21
  PADDLE_ENFORCE(ctx->HasInput("Input"),
C
chengduoZH 已提交
22
                 "Input(Input) of ConvTransposeOp should not be null.");
C
chengduoZH 已提交
23
  PADDLE_ENFORCE(ctx->HasInput("Filter"),
C
chengduoZH 已提交
24
                 "Input(Filter) of ConvTransposeOp should not be null.");
C
chengduoZH 已提交
25
  PADDLE_ENFORCE(ctx->HasOutput("Output"),
C
chengduoZH 已提交
26
                 "Output(Output) of ConvTransposeOp should not be null.");
C
chengduoZH 已提交
27 28 29 30 31 32 33 34 35 36 37

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");

  for (size_t i = 0; i < paddings.size(); ++i) {
    PADDLE_ENFORCE_EQ(paddings[i], 0,
                      "No Padding allowed in conv transpose op.");
  }

C
chengduoZH 已提交
38 39 40 41 42 43 44 45 46 47 48
  PADDLE_ENFORCE(in_dims.size() == 4 || in_dims.size() == 5,
                 "ConvTransposeOp intput should be 4-D or 5-D tensor.");
  PADDLE_ENFORCE_EQ(in_dims.size(), filter_dims.size(),
                    "ConvTransposeOp input dimension and filter dimension "
                    "should be the same.");
  PADDLE_ENFORCE(in_dims.size() - strides.size() == 2U,
                 "ConvTransposeOp input dimension and strides dimension should "
                 "be consistent.");
  PADDLE_ENFORCE_EQ(paddings.size(), strides.size(),
                    "ConvTransposeOp paddings dimension and Conv strides "
                    "dimension should be the same.");
C
chengduoZH 已提交
49 50 51
  PADDLE_ENFORCE_EQ(in_dims[1], filter_dims[0],
                    "In ConvTransposeOp, The input channel should be the same "
                    "as the number of filters.");
C
chengduoZH 已提交
52

C
chengduoZH 已提交
53 54
  std::vector<int64_t> output_shape({in_dims[0], filter_dims[1]});
  for (size_t i = 0; i < paddings.size(); ++i) {
C
chengduoZH 已提交
55 56 57
    output_shape.push_back((in_dims[i + 2] - 1) * strides[i] +
                           filter_dims[i + 2]);
  }
C
chengduoZH 已提交
58
  ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
C
chengduoZH 已提交
59 60
}

C
chengduoZH 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
Conv2DTransposeOpMaker::Conv2DTransposeOpMaker(
    framework::OpProto* proto, framework::OpAttrChecker* op_checker)
    : OpProtoAndCheckerMaker(proto, op_checker) {
  AddInput(
      "Input",
      "(Tensor) The input tensor of convolution transpose operator. "
      "The format of input tensor is NCHW. Where N is batch size, C is the "
      "number of input channels, H and W is the height and width of image.");
  AddInput("Filter",
           "(Tensor) The filter tensor of convolution transpose operator."
           "The format of the filter tensor is CMHW, where C is the number of "
           "output image channels, M is the number of input image channels, "
           "H and W is height and width of filter. "
           "We enforce groups number == 1 and padding == 0 in "
           "convolution transpose Scenario.");
  AddOutput("Output",
            "(Tensor) The output tensor of convolution transpose operator."
            "The format of output tensor is also NCHW.");
C
chengduoZH 已提交
79 80 81
  AddAttr<std::vector<int>>(
      "strides",
      "(vector defalut:{1, 1}), strides of convolution transpose operator.")
C
chengduoZH 已提交
82
      .SetDefault({1, 1});
C
chengduoZH 已提交
83 84 85
  AddAttr<std::vector<int>>(
      "paddings",
      "(vector defalut:{0, 0}), paddings of convolution transpose operator.")
C
chengduoZH 已提交
86 87 88 89 90
      .SetDefault({0, 0});
  AddComment(R"DOC(
The convolution transpose operation calculates the output based on the input, filter
and strides, paddings, groups parameters. The size of each dimension of the
parameters is checked in the infer-shape.
C
chengduoZH 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105

Input(Input, Filter) and output(Output) are in NCHW format. Where N is batch
size, C is the number of channels, H and W is the height and
width of feature. Parameters(ksize, strides, paddings) are two elements.
These two elements represent height and width, respectively.
The input(X) size and output(Out) size may be different.
Example:
  Input:
       Input shape: (N, C_in, H_in, W_in)
       Filter shape: (C_in, C_out, H_f, W_f)
  Output:
       Output shape: (N, C_out, H_out, W_out)
  where
       H_out = (H_in - 1) * strides[0] - 2 * paddings[0] + filter_size[0];
       W_out = (W_in - 1) * strides[1] - 2 * paddings[1] + filter_size[1];
C
chengduoZH 已提交
106 107 108
)DOC");
}

C
chengduoZH 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
Conv3DTransposeOpMaker::Conv3DTransposeOpMaker(
    framework::OpProto* proto, framework::OpAttrChecker* op_checker)
    : OpProtoAndCheckerMaker(proto, op_checker) {
  AddInput(
      "Input",
      "(Tensor) The input tensor of convolution transpose operator."
      "The format of input tensor is NCDHW. Where N is batch size, C is "
      "the number of channels, D, H and W is the depth, height and width of "
      "feature.");
  AddInput("Filter",
           "(Tensor) The filter tensor of convolution transpose operator."
           "The format of the filter tensor is CMDHW, where C is the number of "
           "output image channels, M is the number of input image channels, "
           "D, H and W is depth, height and width of filter. "
           "We enforce groups number == 1 and padding == 0 in "
           "convolution transpose Scenario.");
  AddOutput("Output",
            "(Tensor) The output tensor of convolution transpose operator."
            "The format of output tensor is also NCDHW."
            "Where N is batch size, C is "
            "the number of channels, D, H and W is the depth, height and "
            "width of feature.");
C
chengduoZH 已提交
131 132 133
  AddAttr<std::vector<int>>(
      "strides",
      "(vector defalut:{1, 1, 1}), strides of convolution transpose operator.")
C
chengduoZH 已提交
134
      .SetDefault({1, 1, 1});
C
chengduoZH 已提交
135 136 137
  AddAttr<std::vector<int>>(
      "paddings",
      "(vector defalut:{0, 0, 0}), paddings of convolution transpose operator.")
C
chengduoZH 已提交
138 139 140 141 142
      .SetDefault({0, 0, 0});
  AddComment(R"DOC(
The convolution transpose operation calculates the output based on the input, filter
and strides, paddings, groups parameters. The size of each dimension of the
parameters is checked in the infer-shape.
C
chengduoZH 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158

Input(Input, Filter) and output(Output) are in NCDHW format. Where N is batch
size, C is the number of channels, d, H and W is the depth, height and
width of feature. Parameters(ksize, strides, paddings) are three elements.
These three elements represent depth, height and width, respectively.
The input(X) size and output(Out) size may be different.
Example:
  Input:
       Input shape: (N, C_in, D_in, H_in, W_in)
       Filter shape: (C_in, C_out, D_f, H_f, W_f)
  Output:
       Output shape: (N, C_out, D_out, H_out, W_out)
  where
       D_out = (D_in - 1) * strides[0] - 2 * paddings[0] + filter_size[0];
       H_out = (H_in - 1) * strides[1] - 2 * paddings[1] + filter_size[1];
       W_out = (W_in - 1) * strides[2] - 2 * paddings[2] + filter_size[2];
C
chengduoZH 已提交
159 160 161
)DOC");
}

C
chengduoZH 已提交
162
void ConvTransposeOpGrad::InferShape(framework::InferShapeContext* ctx) const {
C
chengduoZH 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
C
chengduoZH 已提交
177

C
chengduoZH 已提交
178 179
REGISTER_OP(conv2d_transpose, ops::ConvTransposeOp, ops::Conv2DTransposeOpMaker,
            conv2d_transpose_grad, ops::ConvTransposeOpGrad);
C
chengduoZH 已提交
180 181

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
182
    conv2d_transpose,
C
chengduoZH 已提交
183 184
    ops::GemmConv2DTransposeKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
185
    conv2d_transpose_grad,
C
chengduoZH 已提交
186 187
    ops::GemmConv2DTransposeGradKernel<paddle::platform::CPUPlace, float>);

C
chengduoZH 已提交
188 189
REGISTER_OP(conv3d_transpose, ops::ConvTransposeOp, ops::Conv3DTransposeOpMaker,
            conv3d_transpose_grad, ops::ConvTransposeOpGrad);
C
chengduoZH 已提交
190 191

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
192
    conv3d_transpose,
C
chengduoZH 已提交
193 194
    ops::GemmConv3DTransposeKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
195
    conv3d_transpose_grad,
C
chengduoZH 已提交
196
    ops::GemmConv3DTransposeGradKernel<paddle::platform::CPUPlace, float>);