activation_grad_impl.h 22.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

17
#include "paddle/fluid/platform/device_context.h"
18
#include "paddle/phi/core/dense_tensor.h"
C
Charles-hit 已提交
19
#include "paddle/phi/kernels/activation_kernel.h"
C
Charles-hit 已提交
20
#include "paddle/phi/kernels/elementwise_add_kernel.h"
C
Charles-hit 已提交
21 22
#include "paddle/phi/kernels/elementwise_multiply_kernel.h"
#include "paddle/phi/kernels/full_kernel.h"
23
#include "paddle/phi/kernels/funcs/activation_functor.h"
C
Charles-hit 已提交
24
#include "paddle/phi/kernels/scale_kernel.h"
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136

namespace phi {

template <typename T, typename Context, typename Functor>
void ActivationGradImpl(const Context& dev_ctx,
                        const DenseTensor* X,
                        const DenseTensor* Out,
                        const DenseTensor* dOut,
                        DenseTensor* dX,
                        const Functor& functor) {
  if (static_cast<int>(Functor::FwdDeps()) &
      static_cast<int>(funcs::ActBwdOpFwdDeps::kDepOut)) {
    PADDLE_ENFORCE_NOT_NULL(
        Out, errors::NotFound("The input DenseTensor Out can not be nullptr"));
  }
  PADDLE_ENFORCE_NOT_NULL(
      dOut, errors::NotFound("The input DenseTensor dOut can not be nullptr"));
  PADDLE_ENFORCE_NOT_NULL(
      dX, errors::NotFound("The output DenseTensor dX can not be nullptr"));
  if (!Out) {
    Out = dOut;  // fake out
  }
  if (static_cast<int>(Functor::FwdDeps()) &
      static_cast<int>(funcs::ActBwdOpFwdDeps::kDepX)) {
    PADDLE_ENFORCE_NOT_NULL(
        X, errors::NotFound("The input DenseTensor X can not be nullptr"));
  } else {
    VLOG(10) << "Inplace activation of Op Functor: " << typeid(Functor).name();
    X = dX;
  }

  dev_ctx.template Alloc<T>(dX);
  auto dout = phi::EigenVector<T>::Flatten(
      GET_DATA_SAFELY(dOut, "Input", "Out@GRAD", "ActivationGrad"));
  auto out = phi::EigenVector<T>::Flatten(
      GET_DATA_SAFELY(Out, "Input", "Out", "ActivationGrad"));
  auto dx = phi::EigenVector<T>::Flatten(
      GET_DATA_SAFELY(dX, "Input", "X@GRAD", "ActivationGrad"));
  auto x = phi::EigenVector<T>::Flatten(
      GET_DATA_SAFELY(X, "Input", "X", "ActivationGrad"));
  auto* place = dev_ctx.eigen_device();
  // use 32bit index to speed up computation
  bool use_32bit_index = out.size() < Eigen::NumTraits<int>::highest();
  bool is_gpu_place = paddle::platform::is_gpu_place(dev_ctx.GetPlace());
  if (use_32bit_index && is_gpu_place) {
    functor(*place,
            To32BitIndex(x),
            To32BitIndex(out),
            To32BitIndex(dout),
            To32BitIndex(dx));
  } else {
    functor(*place, x, out, dout, dx);
  }
}

template <typename T, typename Context, typename Functor>
void ActivationDoubleGradImpl(const Context& dev_ctx,
                              const DenseTensor* X,
                              const DenseTensor* Out,
                              const DenseTensor* ddX,
                              DenseTensor* dX,
                              DenseTensor* dOut,
                              DenseTensor* ddOut,
                              const Functor& functor) {
  if (static_cast<int>(Functor::FwdDeps()) &
      static_cast<int>(funcs::ActBwdOpFwdDeps::kDepX)) {
    PADDLE_ENFORCE_NOT_NULL(
        X, errors::NotFound("The input DenseTensor X can not be nullptr"));
  } else {
    VLOG(10) << "Inplace activation of Op Functor: " << typeid(Functor).name();
    X = ddX;
  }
  if (static_cast<int>(Functor::FwdDeps()) &
      static_cast<int>(funcs::ActBwdOpFwdDeps::kDepOut)) {
    PADDLE_ENFORCE_NOT_NULL(
        Out, errors::NotFound("The input DenseTensor Out can not be nullptr"));
  } else {
    VLOG(10) << "Inplace activation of Op Functor: " << typeid(Functor).name();
    Out = ddX;
  }

  if (ddOut) {
    dev_ctx.template Alloc<T>(ddOut);
  }
  if (dOut) {
    dev_ctx.template Alloc<T>(dOut);
  }
  if (dX) {
    dX->Resize(Out->dims());
    dev_ctx.template Alloc<T>(dX);
  }

  functor(dev_ctx, X, Out, ddX, ddOut, dOut, dX);
}

template <typename T, typename Context>
void ReluDoubleGradKernel(const Context& dev_ctx,
                          const DenseTensor& out,
                          const DenseTensor& ddx,
                          DenseTensor* ddout) {
  funcs::ReluGradGradFunctor<T> relu_double_grad_functor;
  ActivationDoubleGradImpl<T, Context, funcs::ReluGradGradFunctor<T>>(
      dev_ctx,
      nullptr,
      &out,
      &ddx,
      nullptr,
      nullptr,
      ddout,
      relu_double_grad_functor);
}

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
template <typename T, typename Context>
void LeakyReluDoubleGradKernel(const Context& dev_ctx,
                               const DenseTensor& x,
                               const DenseTensor& ddx,
                               float alpha,
                               DenseTensor* ddout) {
  funcs::LeakyReluGradGradFunctor<T> leaky_relu_double_grad_functor;
  leaky_relu_double_grad_functor.alpha = alpha;
  ActivationDoubleGradImpl<T, Context, funcs::LeakyReluGradGradFunctor<T>>(
      dev_ctx,
      &x,
      nullptr,
      &ddx,
      nullptr,
      nullptr,
      ddout,
      leaky_relu_double_grad_functor);
}

template <typename T, typename Context>
void TanhDoubleGradKernel(const Context& dev_ctx,
                          const DenseTensor& out,
                          const DenseTensor& dout,
160
                          const DenseTensor& ddx,
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
                          DenseTensor* dout_new,
                          DenseTensor* ddout) {
  if (dout_new) {
    dout_new->Resize(out.dims());
    dev_ctx.template Alloc<T>(dout_new);
  }
  if (ddout) {
    ddout->Resize(out.dims());
    dev_ctx.template Alloc<T>(ddout);
  }
  funcs::TanhGradGradFunctor<T> functor;
  functor(dev_ctx, &out, &ddx, &dout, dout_new, ddout);
}

template <typename T, typename Context>
void TanhTripleGradKernel(const Context& dev_ctx,
                          const DenseTensor& out,
                          const DenseTensor& dout,
179
                          const DenseTensor& ddx,
180
                          const DenseTensor& d_dout_new,
181
                          const DenseTensor& d_ddout,
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
                          DenseTensor* d_out_new,
                          DenseTensor* d_dout,
                          DenseTensor* d_ddx) {
  if (d_dout) {
    d_dout->Resize(out.dims());
    dev_ctx.template Alloc<T>(d_dout);
  }
  if (d_out_new) {
    d_dout->Resize(out.dims());
    dev_ctx.template Alloc<T>(d_out_new);
  }
  if (d_ddx) {
    d_dout->Resize(ddx.dims());
    dev_ctx.template Alloc<T>(d_ddx);
  }
  funcs::TanhTripleGradFunctor<T> functor;
  functor(dev_ctx,
          &out,
          &ddx,
          &dout,
          &d_ddout,
          &d_dout_new,  // input
          d_dout,
          d_out_new,
          d_ddx);  // output
}

Y
YuanRisheng 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
template <typename T, typename Context>
void EluDoubleGradKernel(const Context& dev_ctx,
                         const DenseTensor& x,
                         const DenseTensor& dout,
                         const DenseTensor& ddx,
                         float alpha,
                         DenseTensor* dx,
                         DenseTensor* ddout) {
  if (dx) {
    dx->Resize(x.dims());
    dev_ctx.template Alloc<T>(dx);
  }
  if (ddout) {
    dev_ctx.template Alloc<T>(ddout);
  }
  funcs::ELUGradGradFunctor<T> functor;
  functor.alpha = alpha;
  functor(dev_ctx, &x, &ddx, ddout, &dout, dx);
}

229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
template <typename T, typename Context>
void LogitGradKernel(const Context& dev_ctx,
                     const DenseTensor& x,
                     const DenseTensor& out_grad,
                     float eps,
                     DenseTensor* x_grad) {
  dev_ctx.template Alloc<T>(x_grad);

  auto eigen_x = EigenVector<T>::Flatten(x);
  auto eigen_dout = EigenVector<T>::Flatten(out_grad);
  auto eigen_dx = EigenVector<T>::Flatten(*x_grad);
  auto& place = *dev_ctx.eigen_device();
  auto eigen_p = EigenVector<T>::Flatten(x);

  funcs::LogitGradFunctor<T> functor;
  functor(place, eigen_x, eigen_dout, eigen_dx, eigen_p, eps);
}

Y
YuanRisheng 已提交
247 248 249 250
template <typename T, typename Context>
void SigmoidDoubleGradKernel(const Context& dev_ctx,
                             const DenseTensor& out,
                             const DenseTensor& dout,
251
                             const DenseTensor& ddx,
Y
YuanRisheng 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
                             DenseTensor* dout_new,
                             DenseTensor* ddout) {
  if (dout_new) {
    dout_new->Resize(out.dims());
    dev_ctx.template Alloc<T>(dout_new);
  }
  if (ddout) {
    ddout->Resize(out.dims());
    dev_ctx.template Alloc<T>(ddout);
  }
  funcs::SigmoidGradGradFunctor<T> functor;
  functor(dev_ctx, &out, &ddx, &dout, dout_new, ddout);
}

template <typename T, typename Context>
void SigmoidTripleGradKernel(const Context& dev_ctx,
                             const DenseTensor& out,
                             const DenseTensor& dout,
270
                             const DenseTensor& ddx,
Y
YuanRisheng 已提交
271
                             const DenseTensor& d_dout_new,
272
                             const paddle::optional<DenseTensor>& d_ddout,
Y
YuanRisheng 已提交
273 274 275 276 277 278 279 280
                             DenseTensor* d_out_new,
                             DenseTensor* d_dout,
                             DenseTensor* d_ddx) {
  if (d_dout) {
    d_dout->Resize(out.dims());
    dev_ctx.template Alloc<T>(d_dout);
  }
  if (d_out_new) {
281
    d_out_new->Resize(out.dims());
Y
YuanRisheng 已提交
282 283 284
    dev_ctx.template Alloc<T>(d_out_new);
  }
  if (d_ddx) {
285
    d_ddx->Resize(ddx.dims());
Y
YuanRisheng 已提交
286 287 288 289 290 291 292
    dev_ctx.template Alloc<T>(d_ddx);
  }
  funcs::SigmoidTripleGradFunctor<T> functor;
  functor(dev_ctx,
          &out,
          &ddx,
          &dout,
293
          d_ddout.get_ptr(),
Y
YuanRisheng 已提交
294 295 296 297 298 299
          &d_dout_new,
          d_dout,
          d_out_new,
          d_ddx);
}

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
template <typename T, typename Context>
void LogDoubleGradKernel(const Context& dev_ctx,
                         const DenseTensor& x,
                         const DenseTensor& dout,
                         const DenseTensor& ddx,
                         DenseTensor* dx,
                         DenseTensor* ddout) {
  if (dx) {
    dx->Resize(x.dims());
    dev_ctx.template Alloc<T>(dx);
  }
  if (ddout) {
    dev_ctx.template Alloc<T>(ddout);
  }
  funcs::LogGradGradFunctor<T> functor;
  functor(dev_ctx, &x, &ddx, ddout, &dout, dx);
}

Y
YuanRisheng 已提交
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
template <typename T, typename Context>
void PowGradKernel(const Context& dev_ctx,
                   const DenseTensor& x,
                   const DenseTensor& dout,
                   const Scalar& factor,
                   DenseTensor* dx) {
  PADDLE_ENFORCE_NOT_NULL(
      dx, errors::NotFound("The output DenseTensor dX can not be nullptr"));
  if (dx) {
    dev_ctx.template Alloc<T>(dx);
  }
  auto dout_flatten = EigenVector<T>::Flatten(
      GET_DATA_SAFELY(&dout, "Input", "Out@GRAD", "PowGrad"));
  auto dx_flatten = EigenVector<T>::Flatten(
      GET_DATA_SAFELY(dx, "Output", "X@GRAD", "PowGrad"));
  auto x_flatten =
      EigenVector<T>::Flatten(GET_DATA_SAFELY(&x, "Input", "X", "PowGrad"));
  auto* place = dev_ctx.eigen_device();
  phi::funcs::PowGradFunctor<T> functor;
  auto attrs = functor.GetAttrs();
  *(attrs[0].second) = factor.to<float>();
  functor(*place, x_flatten, nullptr, dout_flatten, dx_flatten);
}

C
Charles-hit 已提交
342 343 344 345 346 347 348 349 350
template <typename T, typename Context>
void PowDoubleGradKernel(const Context& dev_ctx,
                         const DenseTensor& x,
                         const DenseTensor& dout,
                         const DenseTensor& ddx,
                         const Scalar& factor,
                         DenseTensor* dx,
                         DenseTensor* ddout) {
  PADDLE_ENFORCE_NOT_NULL(
C
Charles-hit 已提交
351
      dx, errors::NotFound("The output DenseTensor DX can not be nullptr"));
C
Charles-hit 已提交
352 353
  PADDLE_ENFORCE_NOT_NULL(
      ddout,
C
Charles-hit 已提交
354
      errors::NotFound("The output DenseTensor DDOut can not be nullptr"));
C
Charles-hit 已提交
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
  float exponent = factor.to<float>();
  if (exponent == 1) {
    *dx = phi::FullLike<T, Context>(dev_ctx, x, static_cast<T>(0));
  } else {
    DenseTensor dx_tmp1 = phi::Multiply<T, Context>(dev_ctx, dout, ddx);
    DenseTensor dx_tmp2 = phi::Multiply<T, Context>(
        dev_ctx, dx_tmp1, phi::Pow<T, Context>(dev_ctx, x, exponent - 2));
    *dx = phi::Scale<T, Context>(
        dev_ctx, dx_tmp2, exponent * (exponent - 1), 0.0, true);
  }
  DenseTensor ddout_tmp = phi::Multiply<T, Context>(
      dev_ctx, ddx, phi::Pow<T, Context>(dev_ctx, x, exponent - 1));
  *ddout = phi::Scale<T, Context>(dev_ctx, ddout_tmp, exponent, 0.0, true);
}

Y
YuanRisheng 已提交
370
template <typename T, typename Context>
C
Charles-hit 已提交
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
void PowTripleGradKernel(const Context& dev_ctx,
                         const DenseTensor& x,
                         const DenseTensor& dout,
                         const DenseTensor& ddx,
                         const DenseTensor& d_dx,
                         const DenseTensor& d_ddout,
                         const Scalar& factor,
                         DenseTensor* out_d_x,
                         DenseTensor* out_d_dout,
                         DenseTensor* out_d_ddx) {
  PADDLE_ENFORCE_NOT_NULL(
      out_d_x,
      errors::NotFound("The output DenseTensor D_X can not be nullptr"));
  PADDLE_ENFORCE_NOT_NULL(
      out_d_dout,
      errors::NotFound("The output DenseTensor D_DOut can not be nullptr"));
  PADDLE_ENFORCE_NOT_NULL(
      out_d_ddx,
      errors::NotFound("The output DenseTensor D_DDX can not be nullptr"));
  float exponent = factor.to<float>();

  if (exponent != 2 && exponent != 1) {
    // case1: b != 2 and b != 1
    // D_X = D_DX * DDX * DOut * b * (b-1) * (b-2) * X^(b-3)
    //       + D_DDOut * DDX * b * (b-1) * X^(b-2)
    DenseTensor out_d_x_tmp1 = phi::Multiply<T, Context>(dev_ctx, d_dx, ddx);
    DenseTensor out_d_x_tmp2 =
        phi::Scale<T, Context>(dev_ctx,
                               phi::Pow<T, Context>(dev_ctx, x, exponent - 3),
                               exponent * (exponent - 1) * (exponent - 2),
                               0.0,
                               true);
    DenseTensor out_d_x_part1 = phi::Multiply<T, Context>(
        dev_ctx,
        phi::Multiply<T, Context>(dev_ctx, out_d_x_tmp1, dout),
        out_d_x_tmp2);

    DenseTensor out_d_x_tmp3 = phi::Multiply<T, Context>(dev_ctx, d_ddout, ddx);
    DenseTensor out_d_x_tmp4 =
        phi::Scale<T, Context>(dev_ctx,
                               phi::Pow<T, Context>(dev_ctx, x, exponent - 2),
                               exponent * (exponent - 1),
                               0.0,
                               true);
    DenseTensor out_d_x_part2 =
        phi::Multiply<T, Context>(dev_ctx, out_d_x_tmp3, out_d_x_tmp4);

    *out_d_x = phi::Add<T, Context>(dev_ctx, out_d_x_part1, out_d_x_part2);

    // D_DOut = D_DX * DDX * b * (b-1) * X^(b-2)
    DenseTensor out_d_dout_tmp =
        phi::Scale<T, Context>(dev_ctx,
                               phi::Pow<T, Context>(dev_ctx, x, exponent - 2),
                               exponent * (exponent - 1),
                               0.0,
                               true);

    *out_d_dout =
        phi::Multiply<T, Context>(dev_ctx, out_d_x_tmp1, out_d_dout_tmp);
    // D_DDX = D_DX * DOut * b * (b-1) * X^(b-2) + D_DDOut * b * X^(b-1)
    DenseTensor out_d_ddx_tmp1 = phi::Multiply<T, Context>(dev_ctx, d_dx, dout);
    DenseTensor out_d_ddx_part1 =
        phi::Multiply<T, Context>(dev_ctx, out_d_ddx_tmp1, out_d_dout_tmp);

    DenseTensor out_d_ddx_tmp2 =
        phi::Scale<T, Context>(dev_ctx,
                               phi::Pow<T, Context>(dev_ctx, x, exponent - 1),
                               exponent,
                               0.0,
                               true);
    DenseTensor out_d_ddx_part2 =
        phi::Multiply<T, Context>(dev_ctx, d_ddout, out_d_ddx_tmp2);

    *out_d_ddx =
        phi::Add<T, Context>(dev_ctx, out_d_ddx_part1, out_d_ddx_part2);
  } else if (exponent == 2) {
    // case2: b = 2
    // D_X = D_DDOut * DDX * b * (b-1) * X^(b-2)
    DenseTensor out_d_x_tmp1 = phi::Multiply<T, Context>(dev_ctx, d_ddout, ddx);
    DenseTensor out_d_x_tmp2 =
        phi::Scale<T, Context>(dev_ctx,
                               phi::Pow<T, Context>(dev_ctx, x, exponent - 2),
                               exponent * (exponent - 1),
                               0.0,
                               true);

    *out_d_x = phi::Multiply<T, Context>(dev_ctx, out_d_x_tmp1, out_d_x_tmp2);
    // D_DOut = D_DX * DDX * b * (b-1) * X^(b-2)
    DenseTensor out_d_dout_tmp1 = phi::Multiply<T, Context>(dev_ctx, d_dx, ddx);
    DenseTensor out_d_dout_tmp2 =
        phi::Scale<T, Context>(dev_ctx,
                               phi::Pow<T, Context>(dev_ctx, x, exponent - 2),
                               exponent * (exponent - 1),
                               0.0,
                               true);

    *out_d_dout =
        phi::Multiply<T, Context>(dev_ctx, out_d_dout_tmp1, out_d_dout_tmp2);
    // D_DDX = D_DX * DOut * b * (b-1) * X^(b-2) + D_DDOut * b * X^(b-1)
    DenseTensor out_d_ddx_tmp1 = phi::Multiply<T, Context>(dev_ctx, d_dx, dout);
    DenseTensor out_d_ddx_part1 =
        phi::Multiply<T, Context>(dev_ctx, out_d_ddx_tmp1, out_d_dout_tmp2);

    DenseTensor out_d_ddx_tmp2 =
        phi::Scale<T, Context>(dev_ctx,
                               phi::Pow<T, Context>(dev_ctx, x, exponent - 1),
                               exponent,
                               0.0,
                               true);
    DenseTensor out_d_ddx_part2 =
        phi::Multiply<T, Context>(dev_ctx, d_ddout, out_d_ddx_tmp2);

    *out_d_ddx =
        phi::Add<T, Context>(dev_ctx, out_d_ddx_part1, out_d_ddx_part2);
  } else {
    // case3: b = 1
    // D_X = D_DX * DDX * DOut * b * (b-1) * (b-2) * X^(b-3)
    DenseTensor out_d_x_tmp1 = phi::Multiply<T, Context>(dev_ctx, d_dx, ddx);
    DenseTensor out_d_x_tmp2 =
        phi::Scale<T, Context>(dev_ctx,
                               phi::Pow<T, Context>(dev_ctx, x, exponent - 3),
                               exponent * (exponent - 1) * (exponent - 2),
                               0.0,
                               true);

    *out_d_x = phi::Multiply<T, Context>(
        dev_ctx,
        phi::Multiply<T, Context>(dev_ctx, out_d_x_tmp1, dout),
        out_d_x_tmp2);
    // D_DOut = 0
    *out_d_dout = phi::FullLike<T, Context>(dev_ctx, dout, static_cast<T>(0));
    // D_DDX = D_DDOut * b * X^(b-1)
    DenseTensor out_d_ddx_tmp =
        phi::Scale<T, Context>(dev_ctx,
                               phi::Pow<T, Context>(dev_ctx, x, exponent - 1),
                               exponent,
                               0.0,
                               true);

    *out_d_ddx = phi::Multiply<T, Context>(dev_ctx, d_ddout, out_d_ddx_tmp);
  }
}

template <typename T, typename Context>
Y
YuanRisheng 已提交
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
void SqrtDoubleGradKernel(const Context& dev_ctx,
                          const DenseTensor& out,
                          const DenseTensor& dx,
                          const DenseTensor& ddx,
                          DenseTensor* dout,
                          DenseTensor* ddout) {
  if (dout) {
    dout->Resize(out.dims());
    dev_ctx.template Alloc<T>(dout);
  }
  if (ddout) {
    ddout->Resize(out.dims());
    dev_ctx.template Alloc<T>(ddout);
  }

  phi::funcs::SqrtGradGradFunctor<T> functor;
  functor(dev_ctx, &out, &dx, &ddx, dout, ddout);
}

// rsqrt Grad: dx = -0.5 * dy * y * y * y
// rsqrt GradGrad: ddy = -0.5 * ddx * y * y * y, dy = (3 / y) * dx * ddx
template <typename T, typename Context>
void RsqrtDoubleGradKernel(const Context& dev_ctx,
                           const DenseTensor& out,
                           const DenseTensor& dx,
                           const DenseTensor& ddx,
                           DenseTensor* dout,
                           DenseTensor* ddout) {
  if (dout) {
    dout->Resize(out.dims());
    dev_ctx.template Alloc<T>(dout);
  }
  if (ddout) {
    ddout->Resize(out.dims());
    dev_ctx.template Alloc<T>(ddout);
  }

  phi::funcs::RsqrtGradGradFunctor<T> functor;
  functor(dev_ctx, &out, &dx, &ddx, dout, ddout);
}

template <typename T, typename Context>
void CeluDoubleGradKernel(const Context& dev_ctx,
                          const DenseTensor& x,
                          const DenseTensor& dout,
                          const DenseTensor& ddx,
                          float alpha,
                          DenseTensor* dx,
                          DenseTensor* ddout) {
  if (dx) {
    dx->Resize(x.dims());
    dev_ctx.template Alloc<T>(dx);
  }
  if (ddout) {
    dev_ctx.template Alloc<T>(ddout);
  }

  phi::funcs::CELUGradGradFunctor<T> functor;
  auto attrs = functor.GetAttrs();
  *(attrs[0].second) = alpha;
  functor(dev_ctx, &x, &dout, &ddx, dx, ddout);
}

template <typename T, typename Context>
void SquareDoubleGradKernel(const Context& dev_ctx,
                            const DenseTensor& x,
                            const DenseTensor& dout,
                            const DenseTensor& ddx,
                            DenseTensor* dx,
                            DenseTensor* ddout) {
  if (dx) {
    dx->Resize(x.dims());
    dev_ctx.template Alloc<T>(dx);
  }
  if (ddout) {
    dev_ctx.template Alloc<T>(ddout);
  }

  phi::funcs::SquareGradGradFunctor<T> functor;
  functor(dev_ctx, &x, &dout, &ddx, dx, ddout);
}

597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
template <typename T, typename Context>
void SinDoubleGradKernel(const Context& dev_ctx,
                         const DenseTensor& x,
                         const DenseTensor& dout,
                         const DenseTensor& ddx,
                         DenseTensor* dx,
                         DenseTensor* ddout) {
  if (dx) {
    dx->Resize(x.dims());
    dev_ctx.template Alloc<T>(dx);
  }
  if (ddout) {
    dev_ctx.template Alloc<T>(ddout);
  }
  phi::funcs::SinDoubleGradFunctor<T> functor;
  functor(dev_ctx, &x, &dout, &ddx, dx, ddout);
}

615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
template <typename T, typename Context>
void SinTripleGradKernel(const Context& dev_ctx,
                         const DenseTensor& x,
                         const DenseTensor& dout,
                         const DenseTensor& ddx,
                         const DenseTensor& d_dx_new,
                         const DenseTensor& d_ddout,
                         DenseTensor* d_x_new,
                         DenseTensor* d_dout,
                         DenseTensor* d_ddx) {
  if (d_dout) {
    d_dout->Resize(x.dims());
    dev_ctx.template Alloc<T>(d_dout);
  }
  if (d_x_new) {
    d_dout->Resize(x.dims());
    dev_ctx.template Alloc<T>(d_x_new);
  }
  if (d_ddx) {
    d_dout->Resize(ddx.dims());
    dev_ctx.template Alloc<T>(d_ddx);
  }
  funcs::SinTripleGradFunctor<T> functor;
  functor(dev_ctx,
          &x,
          &ddx,
          &dout,
          &d_ddout,
          &d_dx_new,  // input
          d_dout,
          d_x_new,
          d_ddx);  // output
}

649
}  // namespace phi