activation_grad_impl.h 13.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

17
#include "paddle/fluid/platform/device_context.h"
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/kernels/funcs/activation_functor.h"

namespace phi {

template <typename T, typename Context, typename Functor>
void ActivationGradImpl(const Context& dev_ctx,
                        const DenseTensor* X,
                        const DenseTensor* Out,
                        const DenseTensor* dOut,
                        DenseTensor* dX,
                        const Functor& functor) {
  if (static_cast<int>(Functor::FwdDeps()) &
      static_cast<int>(funcs::ActBwdOpFwdDeps::kDepOut)) {
    PADDLE_ENFORCE_NOT_NULL(
        Out, errors::NotFound("The input DenseTensor Out can not be nullptr"));
  }
  PADDLE_ENFORCE_NOT_NULL(
      dOut, errors::NotFound("The input DenseTensor dOut can not be nullptr"));
  PADDLE_ENFORCE_NOT_NULL(
      dX, errors::NotFound("The output DenseTensor dX can not be nullptr"));
  if (!Out) {
    Out = dOut;  // fake out
  }
  if (static_cast<int>(Functor::FwdDeps()) &
      static_cast<int>(funcs::ActBwdOpFwdDeps::kDepX)) {
    PADDLE_ENFORCE_NOT_NULL(
        X, errors::NotFound("The input DenseTensor X can not be nullptr"));
  } else {
    VLOG(10) << "Inplace activation of Op Functor: " << typeid(Functor).name();
    X = dX;
  }

  dev_ctx.template Alloc<T>(dX);
  auto dout = phi::EigenVector<T>::Flatten(
      GET_DATA_SAFELY(dOut, "Input", "Out@GRAD", "ActivationGrad"));
  auto out = phi::EigenVector<T>::Flatten(
      GET_DATA_SAFELY(Out, "Input", "Out", "ActivationGrad"));
  auto dx = phi::EigenVector<T>::Flatten(
      GET_DATA_SAFELY(dX, "Input", "X@GRAD", "ActivationGrad"));
  auto x = phi::EigenVector<T>::Flatten(
      GET_DATA_SAFELY(X, "Input", "X", "ActivationGrad"));
  auto* place = dev_ctx.eigen_device();
  // use 32bit index to speed up computation
  bool use_32bit_index = out.size() < Eigen::NumTraits<int>::highest();
  bool is_gpu_place = paddle::platform::is_gpu_place(dev_ctx.GetPlace());
  if (use_32bit_index && is_gpu_place) {
    functor(*place,
            To32BitIndex(x),
            To32BitIndex(out),
            To32BitIndex(dout),
            To32BitIndex(dx));
  } else {
    functor(*place, x, out, dout, dx);
  }
}

template <typename T, typename Context, typename Functor>
void ActivationDoubleGradImpl(const Context& dev_ctx,
                              const DenseTensor* X,
                              const DenseTensor* Out,
                              const DenseTensor* ddX,
                              DenseTensor* dX,
                              DenseTensor* dOut,
                              DenseTensor* ddOut,
                              const Functor& functor) {
  if (static_cast<int>(Functor::FwdDeps()) &
      static_cast<int>(funcs::ActBwdOpFwdDeps::kDepX)) {
    PADDLE_ENFORCE_NOT_NULL(
        X, errors::NotFound("The input DenseTensor X can not be nullptr"));
  } else {
    VLOG(10) << "Inplace activation of Op Functor: " << typeid(Functor).name();
    X = ddX;
  }
  if (static_cast<int>(Functor::FwdDeps()) &
      static_cast<int>(funcs::ActBwdOpFwdDeps::kDepOut)) {
    PADDLE_ENFORCE_NOT_NULL(
        Out, errors::NotFound("The input DenseTensor Out can not be nullptr"));
  } else {
    VLOG(10) << "Inplace activation of Op Functor: " << typeid(Functor).name();
    Out = ddX;
  }

  if (ddOut) {
    dev_ctx.template Alloc<T>(ddOut);
  }
  if (dOut) {
    dev_ctx.template Alloc<T>(dOut);
  }
  if (dX) {
    dX->Resize(Out->dims());
    dev_ctx.template Alloc<T>(dX);
  }

  functor(dev_ctx, X, Out, ddX, ddOut, dOut, dX);
}

template <typename T, typename Context>
void ReluDoubleGradKernel(const Context& dev_ctx,
                          const DenseTensor& out,
                          const DenseTensor& ddx,
                          DenseTensor* ddout) {
  funcs::ReluGradGradFunctor<T> relu_double_grad_functor;
  ActivationDoubleGradImpl<T, Context, funcs::ReluGradGradFunctor<T>>(
      dev_ctx,
      nullptr,
      &out,
      &ddx,
      nullptr,
      nullptr,
      ddout,
      relu_double_grad_functor);
}

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
template <typename T, typename Context>
void LeakyReluDoubleGradKernel(const Context& dev_ctx,
                               const DenseTensor& x,
                               const DenseTensor& ddx,
                               float alpha,
                               DenseTensor* ddout) {
  funcs::LeakyReluGradGradFunctor<T> leaky_relu_double_grad_functor;
  leaky_relu_double_grad_functor.alpha = alpha;
  ActivationDoubleGradImpl<T, Context, funcs::LeakyReluGradGradFunctor<T>>(
      dev_ctx,
      &x,
      nullptr,
      &ddx,
      nullptr,
      nullptr,
      ddout,
      leaky_relu_double_grad_functor);
}

template <typename T, typename Context>
void TanhDoubleGradKernel(const Context& dev_ctx,
                          const DenseTensor& out,
                          const DenseTensor& dout,
155
                          const DenseTensor& ddx,
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
                          DenseTensor* dout_new,
                          DenseTensor* ddout) {
  if (dout_new) {
    dout_new->Resize(out.dims());
    dev_ctx.template Alloc<T>(dout_new);
  }
  if (ddout) {
    ddout->Resize(out.dims());
    dev_ctx.template Alloc<T>(ddout);
  }
  funcs::TanhGradGradFunctor<T> functor;
  functor(dev_ctx, &out, &ddx, &dout, dout_new, ddout);
}

template <typename T, typename Context>
void TanhTripleGradKernel(const Context& dev_ctx,
                          const DenseTensor& out,
                          const DenseTensor& dout,
174
                          const DenseTensor& ddx,
175
                          const DenseTensor& d_dout_new,
176
                          const DenseTensor& d_ddout,
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
                          DenseTensor* d_out_new,
                          DenseTensor* d_dout,
                          DenseTensor* d_ddx) {
  if (d_dout) {
    d_dout->Resize(out.dims());
    dev_ctx.template Alloc<T>(d_dout);
  }
  if (d_out_new) {
    d_dout->Resize(out.dims());
    dev_ctx.template Alloc<T>(d_out_new);
  }
  if (d_ddx) {
    d_dout->Resize(ddx.dims());
    dev_ctx.template Alloc<T>(d_ddx);
  }
  funcs::TanhTripleGradFunctor<T> functor;
  functor(dev_ctx,
          &out,
          &ddx,
          &dout,
          &d_ddout,
          &d_dout_new,  // input
          d_dout,
          d_out_new,
          d_ddx);  // output
}

Y
YuanRisheng 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
template <typename T, typename Context>
void EluDoubleGradKernel(const Context& dev_ctx,
                         const DenseTensor& x,
                         const DenseTensor& dout,
                         const DenseTensor& ddx,
                         float alpha,
                         DenseTensor* dx,
                         DenseTensor* ddout) {
  if (dx) {
    dx->Resize(x.dims());
    dev_ctx.template Alloc<T>(dx);
  }
  if (ddout) {
    dev_ctx.template Alloc<T>(ddout);
  }
  funcs::ELUGradGradFunctor<T> functor;
  functor.alpha = alpha;
  functor(dev_ctx, &x, &ddx, ddout, &dout, dx);
}

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
template <typename T, typename Context>
void LogitGradKernel(const Context& dev_ctx,
                     const DenseTensor& x,
                     const DenseTensor& out_grad,
                     float eps,
                     DenseTensor* x_grad) {
  dev_ctx.template Alloc<T>(x_grad);

  auto eigen_x = EigenVector<T>::Flatten(x);
  auto eigen_dout = EigenVector<T>::Flatten(out_grad);
  auto eigen_dx = EigenVector<T>::Flatten(*x_grad);
  auto& place = *dev_ctx.eigen_device();
  auto eigen_p = EigenVector<T>::Flatten(x);

  funcs::LogitGradFunctor<T> functor;
  functor(place, eigen_x, eigen_dout, eigen_dx, eigen_p, eps);
}

Y
YuanRisheng 已提交
242 243 244 245
template <typename T, typename Context>
void SigmoidDoubleGradKernel(const Context& dev_ctx,
                             const DenseTensor& out,
                             const DenseTensor& dout,
246
                             const DenseTensor& ddx,
Y
YuanRisheng 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
                             DenseTensor* dout_new,
                             DenseTensor* ddout) {
  if (dout_new) {
    dout_new->Resize(out.dims());
    dev_ctx.template Alloc<T>(dout_new);
  }
  if (ddout) {
    ddout->Resize(out.dims());
    dev_ctx.template Alloc<T>(ddout);
  }
  funcs::SigmoidGradGradFunctor<T> functor;
  functor(dev_ctx, &out, &ddx, &dout, dout_new, ddout);
}

template <typename T, typename Context>
void SigmoidTripleGradKernel(const Context& dev_ctx,
                             const DenseTensor& out,
                             const DenseTensor& dout,
265
                             const DenseTensor& ddx,
Y
YuanRisheng 已提交
266
                             const DenseTensor& d_dout_new,
267
                             const paddle::optional<DenseTensor>& d_ddout,
Y
YuanRisheng 已提交
268 269 270 271 272 273 274 275
                             DenseTensor* d_out_new,
                             DenseTensor* d_dout,
                             DenseTensor* d_ddx) {
  if (d_dout) {
    d_dout->Resize(out.dims());
    dev_ctx.template Alloc<T>(d_dout);
  }
  if (d_out_new) {
276
    d_out_new->Resize(out.dims());
Y
YuanRisheng 已提交
277 278 279
    dev_ctx.template Alloc<T>(d_out_new);
  }
  if (d_ddx) {
280
    d_ddx->Resize(ddx.dims());
Y
YuanRisheng 已提交
281 282 283 284 285 286 287
    dev_ctx.template Alloc<T>(d_ddx);
  }
  funcs::SigmoidTripleGradFunctor<T> functor;
  functor(dev_ctx,
          &out,
          &ddx,
          &dout,
288
          d_ddout.get_ptr(),
Y
YuanRisheng 已提交
289 290 291 292 293 294
          &d_dout_new,
          d_dout,
          d_out_new,
          d_ddx);
}

295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
template <typename T, typename Context>
void LogDoubleGradKernel(const Context& dev_ctx,
                         const DenseTensor& x,
                         const DenseTensor& dout,
                         const DenseTensor& ddx,
                         DenseTensor* dx,
                         DenseTensor* ddout) {
  if (dx) {
    dx->Resize(x.dims());
    dev_ctx.template Alloc<T>(dx);
  }
  if (ddout) {
    dev_ctx.template Alloc<T>(ddout);
  }
  funcs::LogGradGradFunctor<T> functor;
  functor(dev_ctx, &x, &ddx, ddout, &dout, dx);
}

Y
YuanRisheng 已提交
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
template <typename T, typename Context>
void PowGradKernel(const Context& dev_ctx,
                   const DenseTensor& x,
                   const DenseTensor& dout,
                   const Scalar& factor,
                   DenseTensor* dx) {
  PADDLE_ENFORCE_NOT_NULL(
      dx, errors::NotFound("The output DenseTensor dX can not be nullptr"));
  if (dx) {
    dev_ctx.template Alloc<T>(dx);
  }
  auto dout_flatten = EigenVector<T>::Flatten(
      GET_DATA_SAFELY(&dout, "Input", "Out@GRAD", "PowGrad"));
  auto dx_flatten = EigenVector<T>::Flatten(
      GET_DATA_SAFELY(dx, "Output", "X@GRAD", "PowGrad"));
  auto x_flatten =
      EigenVector<T>::Flatten(GET_DATA_SAFELY(&x, "Input", "X", "PowGrad"));
  auto* place = dev_ctx.eigen_device();
  phi::funcs::PowGradFunctor<T> functor;
  auto attrs = functor.GetAttrs();
  *(attrs[0].second) = factor.to<float>();
  functor(*place, x_flatten, nullptr, dout_flatten, dx_flatten);
}

Y
YuanRisheng 已提交
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
template <typename T, typename Context>
void SqrtDoubleGradKernel(const Context& dev_ctx,
                          const DenseTensor& out,
                          const DenseTensor& dx,
                          const DenseTensor& ddx,
                          DenseTensor* dout,
                          DenseTensor* ddout) {
  if (dout) {
    dout->Resize(out.dims());
    dev_ctx.template Alloc<T>(dout);
  }
  if (ddout) {
    ddout->Resize(out.dims());
    dev_ctx.template Alloc<T>(ddout);
  }

  phi::funcs::SqrtGradGradFunctor<T> functor;
  functor(dev_ctx, &out, &dx, &ddx, dout, ddout);
}

// rsqrt Grad: dx = -0.5 * dy * y * y * y
// rsqrt GradGrad: ddy = -0.5 * ddx * y * y * y, dy = (3 / y) * dx * ddx
template <typename T, typename Context>
void RsqrtDoubleGradKernel(const Context& dev_ctx,
                           const DenseTensor& out,
                           const DenseTensor& dx,
                           const DenseTensor& ddx,
                           DenseTensor* dout,
                           DenseTensor* ddout) {
  if (dout) {
    dout->Resize(out.dims());
    dev_ctx.template Alloc<T>(dout);
  }
  if (ddout) {
    ddout->Resize(out.dims());
    dev_ctx.template Alloc<T>(ddout);
  }

  phi::funcs::RsqrtGradGradFunctor<T> functor;
  functor(dev_ctx, &out, &dx, &ddx, dout, ddout);
}

template <typename T, typename Context>
void CeluDoubleGradKernel(const Context& dev_ctx,
                          const DenseTensor& x,
                          const DenseTensor& dout,
                          const DenseTensor& ddx,
                          float alpha,
                          DenseTensor* dx,
                          DenseTensor* ddout) {
  if (dx) {
    dx->Resize(x.dims());
    dev_ctx.template Alloc<T>(dx);
  }
  if (ddout) {
    dev_ctx.template Alloc<T>(ddout);
  }

  phi::funcs::CELUGradGradFunctor<T> functor;
  auto attrs = functor.GetAttrs();
  *(attrs[0].second) = alpha;
  functor(dev_ctx, &x, &dout, &ddx, dx, ddout);
}

template <typename T, typename Context>
void SquareDoubleGradKernel(const Context& dev_ctx,
                            const DenseTensor& x,
                            const DenseTensor& dout,
                            const DenseTensor& ddx,
                            DenseTensor* dx,
                            DenseTensor* ddout) {
  if (dx) {
    dx->Resize(x.dims());
    dev_ctx.template Alloc<T>(dx);
  }
  if (ddout) {
    dev_ctx.template Alloc<T>(ddout);
  }

  phi::funcs::SquareGradGradFunctor<T> functor;
  functor(dev_ctx, &x, &dout, &ddx, dx, ddout);
}

420
}  // namespace phi