pool_op.h 6.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/math_function.h"
#include "paddle/operators/math/pooling.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

class PoolOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override;
};

class PoolOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override;
};

class Pool2dOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  Pool2dOpMaker(framework::OpProto* proto,
                framework::OpAttrChecker* op_checker);
};

class Pool3dOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  Pool3dOpMaker(framework::OpProto* proto,
                framework::OpAttrChecker* op_checker);
};
54 55

template <typename Place, typename T>
C
chengduoZH 已提交
56
class PoolKernel : public framework::OpKernel<T> {
57 58
 public:
  void Compute(const framework::ExecutionContext& context) const override {
C
chengduoZH 已提交
59
    const Tensor* in_x = context.Input<Tensor>("X");
60
    Tensor* out = context.Output<Tensor>("Out");
61

62
    std::string pooling_type = context.Attr<std::string>("poolingType");
63 64 65
    std::vector<int> ksize = context.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
66
    if (context.Attr<bool>("globalPooling")) {
67
      for (size_t i = 0; i < ksize.size(); ++i) {
C
chengduoZH 已提交
68
        ksize[i] = static_cast<int>(in_x->dims()[i + 2]);
69 70 71 72 73 74
      }
    }

    switch (ksize.size()) {
      case 2: {
        if (pooling_type == "max") {
C
chengduoZH 已提交
75
          paddle::operators::math::Pool2dFunctor<
76
              Place, paddle::operators::math::MaxPool<T>, T>
77
              pool2d_forward;
78
          paddle::operators::math::MaxPool<T> pool_process;
C
chengduoZH 已提交
79
          pool2d_forward(context.device_context(), *in_x, *out, ksize, strides,
80
                         paddings, pool_process);
81

C
chengduoZH 已提交
82
        } else if (pooling_type == "avg") {
C
chengduoZH 已提交
83
          paddle::operators::math::Pool2dFunctor<
84
              Place, paddle::operators::math::AvgPool<T>, T>
85
              pool2d_forward;
86
          paddle::operators::math::AvgPool<T> pool_process;
C
chengduoZH 已提交
87
          pool2d_forward(context.device_context(), *in_x, *out, ksize, strides,
88
                         paddings, pool_process);
89 90 91 92
        }
      } break;
      case 3: {
        if (pooling_type == "max") {
C
chengduoZH 已提交
93
          paddle::operators::math::Pool3dFunctor<
94
              Place, paddle::operators::math::MaxPool<T>, T>
95
              pool3d_forward;
96
          paddle::operators::math::MaxPool<T> pool_process;
C
chengduoZH 已提交
97
          pool3d_forward(context.device_context(), *in_x, *out, ksize, strides,
98
                         paddings, pool_process);
C
chengduoZH 已提交
99
        } else if (pooling_type == "avg") {
C
chengduoZH 已提交
100
          paddle::operators::math::Pool3dFunctor<
101
              Place, paddle::operators::math::AvgPool<T>, T>
102
              pool3d_forward;
103
          paddle::operators::math::AvgPool<T> pool_process;
C
chengduoZH 已提交
104
          pool3d_forward(context.device_context(), *in_x, *out, ksize, strides,
105
                         paddings, pool_process);
106 107 108 109 110 111 112
        }
      } break;
    }
  }
};

template <typename Place, typename T>
C
chengduoZH 已提交
113
class PoolGradKernel : public framework::OpKernel<T> {
114 115
 public:
  void Compute(const framework::ExecutionContext& context) const override {
C
chengduoZH 已提交
116
    const Tensor* in_x = context.Input<Tensor>("X");
117 118 119
    const Tensor* out = context.Input<Tensor>("Out");
    const Tensor* out_grad =
        context.Input<Tensor>(framework::GradVarName("Out"));
C
chengduoZH 已提交
120
    Tensor* in_x_grad = context.Output<Tensor>(framework::GradVarName("X"));
121 122

    std::string pooling_type = context.Attr<std::string>("poolingType");
123 124 125 126
    std::vector<int> ksize = context.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");

127
    if (context.Attr<bool>("globalPooling")) {
C
chengduoZH 已提交
128 129
      for (size_t i = 0; i < ksize.size(); ++i)
        ksize[i] = static_cast<int>(in_x->dims()[i + 2]);
130 131
    }

C
chengduoZH 已提交
132 133 134
    if (in_x_grad) {
      in_x_grad->mutable_data<T>(context.GetPlace());
      auto temp = framework::EigenVector<T>::Flatten(*in_x_grad);
135 136 137 138 139 140
      temp.device(context.GetEigenDevice<Place>()) =
          temp.constant(static_cast<T>(0));

      switch (ksize.size()) {
        case 2: {
          if (pooling_type == "max") {
C
chengduoZH 已提交
141
            paddle::operators::math::MaxPool2dGradFunctor<Place, T>
142
                pool2d_backward;
C
chengduoZH 已提交
143
            pool2d_backward(context.device_context(), *in_x, *in_x_grad, *out,
C
chengduoZH 已提交
144
                            *out_grad, ksize, strides, paddings);
C
chengduoZH 已提交
145
          } else if (pooling_type == "avg") {
C
chengduoZH 已提交
146
            paddle::operators::math::Pool2dGradFunctor<
147
                Place, paddle::operators::math::AvgPoolGrad<T>, T>
148
                pool2d_backward;
149
            paddle::operators::math::AvgPoolGrad<T> pool_process;
C
chengduoZH 已提交
150
            pool2d_backward(context.device_context(), *in_x, *in_x_grad, *out,
151
                            *out_grad, ksize, strides, paddings, pool_process);
152 153 154 155
          }
        } break;
        case 3: {
          if (pooling_type == "max") {
C
chengduoZH 已提交
156
            paddle::operators::math::MaxPool3dGradFunctor<Place, T>
157
                pool3d_backward;
C
chengduoZH 已提交
158
            pool3d_backward(context.device_context(), *in_x, *in_x_grad, *out,
C
chengduoZH 已提交
159
                            *out_grad, ksize, strides, paddings);
C
chengduoZH 已提交
160
          } else if (pooling_type == "avg") {
C
chengduoZH 已提交
161
            paddle::operators::math::Pool3dGradFunctor<
162
                Place, paddle::operators::math::AvgPoolGrad<T>, T>
163
                pool3d_backward;
164
            paddle::operators::math::AvgPoolGrad<T> pool_process;
C
chengduoZH 已提交
165
            pool3d_backward(context.device_context(), *in_x, *in_x_grad, *out,
166
                            *out_grad, ksize, strides, paddings, pool_process);
167 168 169 170 171 172 173 174 175
          }
        } break;
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle