ConvOpTest.cpp 4.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <gtest/gtest.h>
#include <memory>
#include "Function.h"
#include "FunctionTest.h"

namespace paddle {

22 23 24 25 26 27
enum TestType {
  FORWARD_TEST = 0,
  BACKWARD_INPUT_TEST = 1,
  BACKWARD_FILTER_TEST = 2,
};

28
template <DeviceType DType1, DeviceType DType2>
29 30 31 32
class ConvolutionTest {
public:
  ConvolutionTest(const std::string& conv1,
                  const std::string& conv2,
33
                  TestType type,
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
                  std::string algo = "auto") {
    for (size_t batchSize : {1, 32}) {
      for (size_t inputSize : {7, 14, 54}) {
        for (size_t filterSize : {1, 3, 5}) {
          for (size_t inputChannels : {3, 64}) {
            for (size_t outputChannels : {3, 64, 128}) {
              if (inputChannels < outputChannels) break;
              for (size_t stride : {1, 2}) {
                for (size_t padding : {0, 1}) {
                  if (padding >= filterSize) break;
                  size_t outputSize =
                      (inputSize - filterSize + 2 * padding + stride) / stride;
                  LOG(INFO) << " batchSize=" << batchSize
                            << " inputChannels=" << inputChannels
                            << " inputHeight=" << inputSize
                            << " inputWidth=" << inputSize
                            << " outputChannels=" << outputChannels
                            << " filterHeight=" << filterSize
                            << " filterWidth=" << filterSize
                            << " outputHeight=" << outputSize
                            << " outputWidth=" << outputSize
                            << " stride=" << stride << " padding=" << padding;

57 58
                  std::vector<size_t> paddings = {padding, padding};
                  std::vector<size_t> strides = {stride, stride};
59 60 61 62 63 64 65 66
                  Compare2Function<DType1, DType2> test(
                      conv1,
                      conv2,
                      FuncConfig()
                          .set("paddings", paddings)
                          .set("strides", strides)
                          .set("groups", (size_t)1)
                          .set("algo", algo));
67

68
                  TensorShape input{
69
                      batchSize, inputChannels, inputSize, inputSize};
70
                  TensorShape filter{
71
                      outputChannels, inputChannels, filterSize, filterSize};
72
                  TensorShape output{
73
                      batchSize, outputChannels, outputSize, outputSize};
74 75 76 77 78 79 80 81 82

                  if (type == FORWARD_TEST) {
                    test.addInputs(BufferArg(VALUE_TYPE_FLOAT, input));
                    test.addInputs(BufferArg(VALUE_TYPE_FLOAT, filter));
                    test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, output));
                    test.run();
                  } else if (type == BACKWARD_INPUT_TEST) {
                    test.addInputs(BufferArg(VALUE_TYPE_FLOAT, output));
                    test.addInputs(BufferArg(VALUE_TYPE_FLOAT, filter));
H
hedaoyuan 已提交
83
                    test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, input), ADD_TO);
84 85 86 87 88 89 90
                    test.run();
                  } else if (type == BACKWARD_FILTER_TEST) {
                    test.addInputs(BufferArg(VALUE_TYPE_FLOAT, output));
                    test.addInputs(BufferArg(VALUE_TYPE_FLOAT, input));
                    test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, filter));
                    test.run();
                  }
91 92 93 94 95 96 97 98 99 100
                }
              }
            }
          }
        }
      }
    }
  }
};

101 102 103
TEST(Forward, GEMM) {
  ConvolutionTest<DEVICE_TYPE_CPU, DEVICE_TYPE_CPU> test(
      "NaiveConv-CPU", "GemmConv-CPU", FORWARD_TEST);
104 105
}

H
Bug fix  
hedaoyuan 已提交
106
#ifndef PADDLE_ONLY_CPU
107 108 109 110 111
TEST(Forward, GEMM2) {
  ConvolutionTest<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test(
      "GemmConv-CPU", "GemmConv-GPU", FORWARD_TEST);
}

112 113 114 115 116
TEST(BackwardInput, GEMM) {
  ConvolutionTest<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test(
      "GemmConvGradInput-CPU", "GemmConvGradInput-GPU", BACKWARD_INPUT_TEST);
}

117 118 119
TEST(BackwardFilter, GEMM) {
  ConvolutionTest<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test(
      "GemmConvGradFilter-CPU", "GemmConvGradFilter-GPU", BACKWARD_FILTER_TEST);
120
}
H
Bug fix  
hedaoyuan 已提交
121
#endif
122 123

}  // namespace paddle