ConvOpTest.cpp 4.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <gtest/gtest.h>
#include <memory>
#include "Function.h"
#include "FunctionTest.h"

namespace paddle {

22 23 24 25 26 27
enum TestType {
  FORWARD_TEST = 0,
  BACKWARD_INPUT_TEST = 1,
  BACKWARD_FILTER_TEST = 2,
};

28
template <DeviceType DType1, DeviceType DType2>
29 30 31 32
class ConvolutionTest {
public:
  ConvolutionTest(const std::string& conv1,
                  const std::string& conv2,
33
                  TestType type,
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
                  std::string algo = "auto") {
    for (size_t batchSize : {1, 32}) {
      for (size_t inputSize : {7, 14, 54}) {
        for (size_t filterSize : {1, 3, 5}) {
          for (size_t inputChannels : {3, 64}) {
            for (size_t outputChannels : {3, 64, 128}) {
              if (inputChannels < outputChannels) break;
              for (size_t stride : {1, 2}) {
                for (size_t padding : {0, 1}) {
                  if (padding >= filterSize) break;
                  size_t outputSize =
                      (inputSize - filterSize + 2 * padding + stride) / stride;
                  LOG(INFO) << " batchSize=" << batchSize
                            << " inputChannels=" << inputChannels
                            << " inputHeight=" << inputSize
                            << " inputWidth=" << inputSize
                            << " outputChannels=" << outputChannels
                            << " filterHeight=" << filterSize
                            << " filterWidth=" << filterSize
                            << " outputHeight=" << outputSize
                            << " outputWidth=" << outputSize
                            << " stride=" << stride << " padding=" << padding;

57 58
                  std::vector<size_t> paddings = {padding, padding};
                  std::vector<size_t> strides = {stride, stride};
59 60 61 62 63 64 65 66
                  Compare2Function<DType1, DType2> test(
                      conv1,
                      conv2,
                      FuncConfig()
                          .set("paddings", paddings)
                          .set("strides", strides)
                          .set("groups", (size_t)1)
                          .set("algo", algo));
67

68
                  TensorShape input{
69
                      batchSize, inputChannels, inputSize, inputSize};
70
                  TensorShape filter{
71
                      outputChannels, inputChannels, filterSize, filterSize};
72
                  TensorShape output{
73
                      batchSize, outputChannels, outputSize, outputSize};
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92

                  if (type == FORWARD_TEST) {
                    test.addInputs(BufferArg(VALUE_TYPE_FLOAT, input));
                    test.addInputs(BufferArg(VALUE_TYPE_FLOAT, filter));
                    test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, output));
                    test.run();
                  } else if (type == BACKWARD_INPUT_TEST) {
#if 0
                    test.addInputs(BufferArg(VALUE_TYPE_FLOAT, output));
                    test.addInputs(BufferArg(VALUE_TYPE_FLOAT, filter));
                    test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, input));
                    test.run();
#endif
                  } else if (type == BACKWARD_FILTER_TEST) {
                    test.addInputs(BufferArg(VALUE_TYPE_FLOAT, output));
                    test.addInputs(BufferArg(VALUE_TYPE_FLOAT, input));
                    test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, filter));
                    test.run();
                  }
93 94 95 96 97 98 99 100 101 102
                }
              }
            }
          }
        }
      }
    }
  }
};

103 104 105
TEST(Forward, GEMM) {
  ConvolutionTest<DEVICE_TYPE_CPU, DEVICE_TYPE_CPU> test(
      "NaiveConv-CPU", "GemmConv-CPU", FORWARD_TEST);
106 107
}

H
Bug fix  
hedaoyuan 已提交
108
#ifndef PADDLE_ONLY_CPU
109 110 111 112 113 114 115 116
TEST(Forward, GEMM2) {
  ConvolutionTest<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test(
      "GemmConv-CPU", "GemmConv-GPU", FORWARD_TEST);
}

TEST(BackwardFilter, GEMM) {
  ConvolutionTest<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test(
      "GemmConvGradFilter-CPU", "GemmConvGradFilter-GPU", BACKWARD_FILTER_TEST);
117
}
H
Bug fix  
hedaoyuan 已提交
118
#endif
119 120

}  // namespace paddle