input.py 9.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import warnings
17
from ...static import Variable
18 19
from ...fluid.layer_helper import LayerHelper
from ...fluid.data_feeder import check_variable_and_dtype, check_dtype
W
wanghuancoder 已提交
20
from paddle import _C_ops
Z
zhiboniu 已提交
21
from paddle import in_dynamic_mode
H
hong 已提交
22
from paddle.framework import _in_eager_mode
23

24 25
__all__ = []

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76

def one_hot(x, num_classes, name=None):
    """

    The operator converts each id in the input 'x' to an one-hot vector with a
    num_classes length. The value in the vector dimension corresponding to the id
    is 1, and the value in the remaining dimension is 0.

    The shape of output Tensor is generated by appending num_classes dimension
    behind the last dimension of the 'x' shape.

    .. code-block:: text

        Example 1:

        input:
            x.shape = [4]
            x.data = [1, 1, 3, 0]
            num_classes = 4

        output:
            Out.shape = [4, 4]
            Out.data = [[0., 1., 0., 0.],
                        [0., 1., 0., 0.],
                        [0., 0., 0., 1.],
                        [1., 0., 0., 0.]]

        Example 2:

        input:
            x.shape = [4]
            x.data = [1, 1, 5, 0]
            num_classes = 4

        output: Throw an exception for Illegal value
            The second dimension in X is 5, which is greater than num_classes,
            so it throws an exception.


    Args:
        x(Tensor): Tensor with shape :math:`[N_1, N_2, ..., N_k]` ,
            which contains at least one dimension. The data type is int32 or int64.
        num_classes(int): An integer defining the num_classes of the one hot dimension. If input 'x'
            is word id, num_classes is generally the dictionary size.

    Returns:
        Tensor: The one-hot representations of 'x'. A Tensor with type float32.

    Examples:
        .. code-block:: python

77
            import paddle
78
            # Correspond to the first example above, where label.shape is 4 and one_hot_label.shape is [4, 4].
Y
yukavio 已提交
79
            label = paddle.to_tensor([1, 1, 3, 0], dtype='int64')
80
            # label.shape = [4]
Y
yukavio 已提交
81
            one_hot_label = paddle.nn.functional.one_hot(label, num_classes=4)
82
            # one_hot_label.shape = [4, 4]
Y
yukavio 已提交
83 84 85 86
            # one_hot_label = [[0., 1., 0., 0.],
            #                  [0., 1., 0., 0.],
            #                  [0., 0., 0., 1.],
            #                  [1., 0., 0., 0.]]
T
tangwei12 已提交
87

88 89
    """

Z
zhiboniu 已提交
90
    if in_dynamic_mode():
H
hong 已提交
91 92
        if _in_eager_mode():
            return _C_ops.final_state_one_hot(x, num_classes)
W
wanghuancoder 已提交
93 94
        return _C_ops.one_hot_v2(x, 'depth', num_classes, 'allow_out_of_range',
                                 False)
95 96 97 98 99 100
    else:
        check_variable_and_dtype(x, 'input', ['int32', 'int64'], 'one_hot_v2')
        helper = LayerHelper("one_hot_v2", **locals())

        one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
        if not isinstance(num_classes, Variable):
T
tangwei12 已提交
101
            # user attribute
102 103 104 105 106 107 108 109 110 111 112 113 114
            inputs = {'X': x}
            attrs = {'depth': num_classes, 'allow_out_of_range': False}
        else:
            num_classes.stop_gradient = True
            inputs = {'X': x, 'depth_tensor': num_classes}
            attrs = {'allow_out_of_range': False}
        helper.append_op(
            type="one_hot_v2",
            inputs=inputs,
            attrs=attrs,
            outputs={'Out': one_hot_out},
            stop_gradient=True)
        return one_hot_out
T
tangwei12 已提交
115 116 117


def embedding(x, weight, padding_idx=None, sparse=False, name=None):
118
    r"""
T
tangwei12 已提交
119
    The operator is used to lookup embeddings vector of ids provided by :attr:`x` .
T
tangwei12 已提交
120 121 122

    The shape of output Tensor is generated by appending the last dimension of the input Tensor shape
    with embedding size.
T
tangwei12 已提交
123 124

    **Note:** The id in :attr:`x` must satisfy :math:`0 =< id < weight.shape[0]` ,
T
tangwei12 已提交
125 126 127 128 129
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:
T
tangwei12 已提交
130
            x is a Tensor.
T
tangwei12 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144
                padding_idx = -1
                x.data = [[1, 3], [2, 4], [4, 127]]
                x.shape = [3, 2]
                weight.shape = [128, 16]
            output is a Tensor:
                out.shape = [3, 2, 16]
                out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                            [0.345421456, 0.524563927, ..., 0.144534654]],
                            [[0.345249859, 0.124939536, ..., 0.194353745],
                            [0.945345345, 0.435394634, ..., 0.435345365]],
                            [[0.945345345, 0.435394634, ..., 0.435345365],
                            [0.0,         0.0,         ..., 0.0        ]]]  # padding data

            The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
T
tangwei12 已提交
145
            It will pad all-zero data when id is 127.
T
tangwei12 已提交
146 147 148 149 150 151 152 153 154

    Args:
        x(Tensor): A Tensor with type int32/int64, which contains the id information. The value of the input id should
            satisfy :math:`0<= id < weight.shape[0]` .
        weight (Tensor): The weight. A Tensor with shape of lookup table parameter. It should have two elements which
            indicates the size of the dictionary of embeddings and the size of each embedding vector respectively.
        sparse(bool): The flag indicating whether to use sparse update. This parameter only
            affects the performance of the backwards gradient update. It is recommended to set
            True because sparse update is faster. But some optimizers does not support sparse update,
T
tangwei12 已提交
155
            such as :ref:`api_paddle_optimizer_adadelta_Adadelta` , :ref:`api_paddle_optimizer_adamax_Adamax` , :ref:`api_paddle_optimizer_lamb_Lamb`.
T
tangwei12 已提交
156 157
            In these cases, sparse must be False. Default: False.
        padding_idx(int|long|None): padding_idx needs to be in the interval [-weight.shape[0], weight.shape[0]).
T
tangwei12 已提交
158
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
T
tangwei12 已提交
159
            to :math:`weight.shape[0] + padding\_idx` . It will output all-zero padding data whenever lookup
T
tangwei12 已提交
160 161 162 163 164 165 166
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        name(str|None): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
           None by default.

    Returns:
T
tangwei12 已提交
167
        Tensor: Embedding Tensor  mapped by x. The data type is the same as :attr:`weight`.
T
tangwei12 已提交
168 169 170 171 172

    Examples:

        .. code-block:: python

T
tangwei12 已提交
173
            import numpy as np
T
tangwei12 已提交
174 175 176
            import paddle
            import paddle.nn as nn

T
tangwei12 已提交
177 178
            x0 = np.arange(3, 6).reshape((3, 1)).astype(np.int64)
            w0 = np.full(shape=(10, 3), fill_value=2).astype(np.float32)
T
tangwei12 已提交
179

T
tangwei12 已提交
180 181 182
            # x.data = [[3], [4], [5]]
            # x.shape = [3, 1]
            x = paddle.to_tensor(x0, stop_gradient=False)
T
tangwei12 已提交
183

T
tangwei12 已提交
184 185 186
            # w.data = [[2. 2. 2.] ... [2. 2. 2.]]
            # w.shape = [10, 3]
            w = paddle.to_tensor(w0, stop_gradient=False)
T
tangwei12 已提交
187

T
tangwei12 已提交
188 189 190 191
            # emb.data = [[[2., 2., 2.]], [[2., 2., 2.]], [[2., 2., 2.]]]
            # emb.shape = [3, 1, 3]
            emb = nn.functional.embedding(
                    x=x, weight=w, sparse=True, name="embedding")
T
tangwei12 已提交
192 193

    """
194 195 196 197 198 199 200
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        weight.shape[0] + padding_idx)

    if padding_idx >= weight.shape[0] or padding_idx < -weight.shape[0]:
        raise ValueError("padding_idx must be within [-{}, {})".format(
            weight.shape[0], weight.shape[0]))

Z
zhiboniu 已提交
201
    if in_dynamic_mode():
W
wanghuancoder 已提交
202
        return _C_ops.lookup_table_v2(
T
tangwei12 已提交
203 204 205 206
            weight, x, 'is_sparse', sparse, 'is_distributed', False,
            'remote_prefetch', False, 'padding_idx', padding_idx)
    else:
        helper = LayerHelper('embedding', **locals())
207
        dtype = helper.input_dtype(input_param_name='weight')
T
tangwei12 已提交
208

209 210 211
        check_variable_and_dtype(x, 'input',
                                 ['uint8', 'int8', 'int16', 'int32', 'int64'],
                                 'embedding')
T
tangwei12 已提交
212 213 214 215 216

        is_distributed = False
        remote_prefetch = sparse and (not is_distributed)

        tmp = helper.create_variable_for_type_inference(dtype)
T
tangwei12 已提交
217

T
tangwei12 已提交
218 219 220 221 222 223 224 225 226 227 228 229
        helper.append_op(
            type='lookup_table_v2',
            inputs={'Ids': x,
                    'W': weight},
            outputs={'Out': tmp},
            attrs={
                'is_sparse': sparse,
                'is_distributed': is_distributed,
                'remote_prefetch': remote_prefetch,
                'padding_idx': padding_idx
            })
        return tmp