input.py 8.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import warnings
17
from ...static import Variable
18 19
from ...fluid.layer_helper import LayerHelper
from ...fluid.data_feeder import check_variable_and_dtype, check_dtype
W
wanghuancoder 已提交
20
from paddle import _C_ops
Z
zhiboniu 已提交
21
from paddle import in_dynamic_mode
22

23 24
__all__ = []

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

def one_hot(x, num_classes, name=None):
    """

    The operator converts each id in the input 'x' to an one-hot vector with a
    num_classes length. The value in the vector dimension corresponding to the id
    is 1, and the value in the remaining dimension is 0.

    The shape of output Tensor is generated by appending num_classes dimension
    behind the last dimension of the 'x' shape.

    .. code-block:: text

        Example 1:

        input:
            x.shape = [4]
            x.data = [1, 1, 3, 0]
            num_classes = 4

        output:
            Out.shape = [4, 4]
            Out.data = [[0., 1., 0., 0.],
                        [0., 1., 0., 0.],
                        [0., 0., 0., 1.],
                        [1., 0., 0., 0.]]

        Example 2:

        input:
            x.shape = [4]
            x.data = [1, 1, 5, 0]
            num_classes = 4

        output: Throw an exception for Illegal value
            The second dimension in X is 5, which is greater than num_classes,
            so it throws an exception.


    Args:
        x(Tensor): Tensor with shape :math:`[N_1, N_2, ..., N_k]` ,
            which contains at least one dimension. The data type is int32 or int64.
        num_classes(int): An integer defining the num_classes of the one hot dimension. If input 'x'
            is word id, num_classes is generally the dictionary size.

    Returns:
        Tensor: The one-hot representations of 'x'. A Tensor with type float32.

    Examples:
        .. code-block:: python

76
            import paddle
77
            # Correspond to the first example above, where label.shape is 4 and one_hot_label.shape is [4, 4].
Y
yukavio 已提交
78
            label = paddle.to_tensor([1, 1, 3, 0], dtype='int64')
79
            # label.shape = [4]
Y
yukavio 已提交
80
            one_hot_label = paddle.nn.functional.one_hot(label, num_classes=4)
81
            # one_hot_label.shape = [4, 4]
Y
yukavio 已提交
82 83 84 85
            # one_hot_label = [[0., 1., 0., 0.],
            #                  [0., 1., 0., 0.],
            #                  [0., 0., 0., 1.],
            #                  [1., 0., 0., 0.]]
T
tangwei12 已提交
86

87 88
    """

Z
zhiboniu 已提交
89
    if in_dynamic_mode():
W
wanghuancoder 已提交
90 91
        return _C_ops.one_hot_v2(x, 'depth', num_classes, 'allow_out_of_range',
                                 False)
92 93 94 95 96 97
    else:
        check_variable_and_dtype(x, 'input', ['int32', 'int64'], 'one_hot_v2')
        helper = LayerHelper("one_hot_v2", **locals())

        one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
        if not isinstance(num_classes, Variable):
T
tangwei12 已提交
98
            # user attribute
99 100 101 102 103 104 105 106 107 108 109 110 111
            inputs = {'X': x}
            attrs = {'depth': num_classes, 'allow_out_of_range': False}
        else:
            num_classes.stop_gradient = True
            inputs = {'X': x, 'depth_tensor': num_classes}
            attrs = {'allow_out_of_range': False}
        helper.append_op(
            type="one_hot_v2",
            inputs=inputs,
            attrs=attrs,
            outputs={'Out': one_hot_out},
            stop_gradient=True)
        return one_hot_out
T
tangwei12 已提交
112 113 114


def embedding(x, weight, padding_idx=None, sparse=False, name=None):
115
    r"""
T
tangwei12 已提交
116
    The operator is used to lookup embeddings vector of ids provided by :attr:`x` .
T
tangwei12 已提交
117 118 119

    The shape of output Tensor is generated by appending the last dimension of the input Tensor shape
    with embedding size.
T
tangwei12 已提交
120 121

    **Note:** The id in :attr:`x` must satisfy :math:`0 =< id < weight.shape[0]` ,
T
tangwei12 已提交
122 123 124 125 126
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:
T
tangwei12 已提交
127
            x is a Tensor.
T
tangwei12 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141
                padding_idx = -1
                x.data = [[1, 3], [2, 4], [4, 127]]
                x.shape = [3, 2]
                weight.shape = [128, 16]
            output is a Tensor:
                out.shape = [3, 2, 16]
                out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                            [0.345421456, 0.524563927, ..., 0.144534654]],
                            [[0.345249859, 0.124939536, ..., 0.194353745],
                            [0.945345345, 0.435394634, ..., 0.435345365]],
                            [[0.945345345, 0.435394634, ..., 0.435345365],
                            [0.0,         0.0,         ..., 0.0        ]]]  # padding data

            The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
T
tangwei12 已提交
142
            It will pad all-zero data when id is 127.
T
tangwei12 已提交
143 144 145 146 147 148 149 150 151

    Args:
        x(Tensor): A Tensor with type int32/int64, which contains the id information. The value of the input id should
            satisfy :math:`0<= id < weight.shape[0]` .
        weight (Tensor): The weight. A Tensor with shape of lookup table parameter. It should have two elements which
            indicates the size of the dictionary of embeddings and the size of each embedding vector respectively.
        sparse(bool): The flag indicating whether to use sparse update. This parameter only
            affects the performance of the backwards gradient update. It is recommended to set
            True because sparse update is faster. But some optimizers does not support sparse update,
T
tangwei12 已提交
152
            such as :ref:`api_paddle_optimizer_adadelta_Adadelta` , :ref:`api_paddle_optimizer_adamax_Adamax` , :ref:`api_paddle_optimizer_lamb_Lamb`.
T
tangwei12 已提交
153 154
            In these cases, sparse must be False. Default: False.
        padding_idx(int|long|None): padding_idx needs to be in the interval [-weight.shape[0], weight.shape[0]).
T
tangwei12 已提交
155
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
T
tangwei12 已提交
156
            to :math:`weight.shape[0] + padding\_idx` . It will output all-zero padding data whenever lookup
T
tangwei12 已提交
157 158 159 160 161 162 163
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        name(str|None): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
           None by default.

    Returns:
T
tangwei12 已提交
164
        Tensor: Embedding Tensor  mapped by x. The data type is the same as :attr:`weight`.
T
tangwei12 已提交
165 166 167 168 169

    Examples:

        .. code-block:: python

T
tangwei12 已提交
170
            import numpy as np
T
tangwei12 已提交
171 172 173
            import paddle
            import paddle.nn as nn

T
tangwei12 已提交
174 175
            x0 = np.arange(3, 6).reshape((3, 1)).astype(np.int64)
            w0 = np.full(shape=(10, 3), fill_value=2).astype(np.float32)
T
tangwei12 已提交
176

T
tangwei12 已提交
177 178 179
            # x.data = [[3], [4], [5]]
            # x.shape = [3, 1]
            x = paddle.to_tensor(x0, stop_gradient=False)
T
tangwei12 已提交
180

T
tangwei12 已提交
181 182 183
            # w.data = [[2. 2. 2.] ... [2. 2. 2.]]
            # w.shape = [10, 3]
            w = paddle.to_tensor(w0, stop_gradient=False)
T
tangwei12 已提交
184

T
tangwei12 已提交
185 186 187 188
            # emb.data = [[[2., 2., 2.]], [[2., 2., 2.]], [[2., 2., 2.]]]
            # emb.shape = [3, 1, 3]
            emb = nn.functional.embedding(
                    x=x, weight=w, sparse=True, name="embedding")
T
tangwei12 已提交
189 190

    """
191 192 193 194 195 196 197
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        weight.shape[0] + padding_idx)

    if padding_idx >= weight.shape[0] or padding_idx < -weight.shape[0]:
        raise ValueError("padding_idx must be within [-{}, {})".format(
            weight.shape[0], weight.shape[0]))

Z
zhiboniu 已提交
198
    if in_dynamic_mode():
W
wanghuancoder 已提交
199
        return _C_ops.lookup_table_v2(
T
tangwei12 已提交
200 201 202 203
            weight, x, 'is_sparse', sparse, 'is_distributed', False,
            'remote_prefetch', False, 'padding_idx', padding_idx)
    else:
        helper = LayerHelper('embedding', **locals())
204
        dtype = helper.input_dtype(input_param_name='weight')
T
tangwei12 已提交
205

206 207 208
        check_variable_and_dtype(x, 'input',
                                 ['uint8', 'int8', 'int16', 'int32', 'int64'],
                                 'embedding')
T
tangwei12 已提交
209 210 211 212 213

        is_distributed = False
        remote_prefetch = sparse and (not is_distributed)

        tmp = helper.create_variable_for_type_inference(dtype)
T
tangwei12 已提交
214

T
tangwei12 已提交
215 216 217 218 219 220 221 222 223 224 225 226
        helper.append_op(
            type='lookup_table_v2',
            inputs={'Ids': x,
                    'W': weight},
            outputs={'Out': tmp},
            attrs={
                'is_sparse': sparse,
                'is_distributed': is_distributed,
                'remote_prefetch': remote_prefetch,
                'padding_idx': padding_idx
            })
        return tmp