reader.py 58.0 KB
Newer Older
S
sneaxiy 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from . import core
16
import sys
S
sneaxiy 已提交
17
import six
18
import numpy as np
S
sneaxiy 已提交
19
import threading
20
import paddle
Z
Zeng Jinle 已提交
21
from .framework import Program, Variable, program_guard, default_main_program, default_startup_program, in_dygraph_mode, cpu_places
S
sneaxiy 已提交
22
from .executor import global_scope
23
from .data_feeder import DataFeeder, BatchedTensorProvider
S
sneaxiy 已提交
24
from .layers.io import monkey_patch_reader_methods, _copy_reader_var_, double_buffer
S
sneaxiy 已提交
25
from .unique_name import UniqueNameGenerator
26
import logging
Z
Zeng Jinle 已提交
27
from .dataset import DatasetBase, InMemoryDataset
S
sneaxiy 已提交
28

29
### Dygraph DataLoader configs ###
30 31
import atexit
import os
32 33 34 35 36 37 38
import multiprocessing
import signal
# NOTE: queue has a different name in python2 and python3
if sys.version_info[0] == 2:
    import Queue as queue
else:
    import queue
39 40 41 42 43 44 45
# NOTE: [ avoid hanging & failed quickly ] These value is used in getting data from another process
QUEUE_GET_TIMEOUT = 60

# NOTE: [ mmap files clear ] If there is still data in the multiprocess queue when the main process finishes reading,
# the data in the queue needs to be popped. Then the LoDTensor read by the main process
# from the child process will automatically clear the memory-mapped file.
multiprocess_queue_set = set()
46

Z
Zeng Jinle 已提交
47 48 49
__all__ = ['PyReader', 'DataLoader']

data_loader_unique_name_generator = UniqueNameGenerator()
S
sneaxiy 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66


def _convert_places(places):
    if not isinstance(places, (list, tuple)):
        places = [places]

    ret = []
    for p in places:
        if not isinstance(p, core.Place):
            tmp = core.Place()
            tmp.set_place(p)
            p = tmp

        ret.append(p)
    return ret


67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
def _clear_multiprocess_queue_set():
    global multiprocess_queue_set
    for data_queue in multiprocess_queue_set:
        while True:
            try:
                data_queue.get_nowait()
            except queue.Empty:
                break


# NOTE: main process clear function at exit
def _cleanup():
    # NOTE: inter-process Queue shared memory objects clear function
    _clear_multiprocess_queue_set()
    # NOTE: main process memory map files clear funciton
    core._cleanup_mmap_fds()


# NOTE used for register a function to be executed at interpreter exit.
class CleanupFuncRegistrar():
    # Record the cleanup functions that have been executed
    _executed_func_set = set()
    # Record the cleanup functions that have been registered
    _registered_func_set = set()

    @classmethod
    def register(cls, function, signals=[signal.SIGTERM]):
        def _func_exectuor():
            if function not in cls._executed_func_set:
                try:
                    function()
                finally:
                    cls._executed_func_set.add(function)

        def _func_register(function):
            if not callable(function):
                raise TypeError("%s is not callable object." % (function))
            # check function object whether hash-able
            set([function])
            if function not in cls._registered_func_set:
                atexit.register(_func_exectuor)
                cls._registered_func_set.add(function)

        def _signal_handler(signum=None, frame=None):
            _func_exectuor()
            if signum is not None:
                if signum == signal.SIGINT:
                    raise KeyboardInterrupt
                sys.exit(signum)

        def _signal_register(signals):
            signals = set(signals)
            for sig in signals:
                orig_handler = signal.signal(sig, _signal_handler)
                if orig_handler not in (signal.SIG_DFL, signal.SIG_IGN):
                    if (sig == signal.SIGINT and
                            orig_handler is signal.default_int_handler):
                        continue
                    if orig_handler not in cls._registered_func_set:
                        atexit.register(orig_handler)
                        cls._registered_func_set.add(orig_handler)

        # deal with signals
        _signal_register(signals)
        # deal with function
        _func_register(function)


# NOTE: [ mmap files clear ] When the main process exits unexpectedly, the remaining
# shared memory objects in the inter-process Queue and the main process (mostly in the
# BlockingQueue) may not be completely released, resulting in the corresponding
# memory-mapped file remaining on the disk (/dev/shm), so register this function
# to clean up shared memory objects in these two queues before the python interpreter exits.
CleanupFuncRegistrar.register(_cleanup)


Z
Zeng Jinle 已提交
143 144 145
class DataLoaderBase(object):
    def __init__(self):
        self._places = None
S
sneaxiy 已提交
146

Z
Zeng Jinle 已提交
147 148
    def __call__(self):
        return self
S
sneaxiy 已提交
149

Z
Zeng Jinle 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
    def next(self):
        '''
        Get the next item in the DataLoader object. This method    
        should not be called by users directly. It is used for
        implementing iterator protocol of Python 2.x inside
        PaddlePaddle framework.
        '''
        return self.__next__()

    def __iter__(self):
        raise NotImplementedError()

    def __next__(self):
        raise NotImplementedError()


class DataLoader(object):
    @staticmethod
    def from_generator(feed_list=None,
                       capacity=None,
                       use_double_buffer=True,
                       iterable=True,
172 173
                       return_list=False,
                       use_multiprocess=False):
Z
Zeng Jinle 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
        """
        Create a DataLoader object for loading data from Python generator. 
        Data would be prefetched using Python thread and be pushed
        into a queue asynchronously.

        The created DataLoader object provides 3 methods to set the data source
        :code:`set_sample_generator` , :code:`set_sample_list_generator` and 
        :code:`set_batch_generator` . Please see the following example codes
        to know their usages.

        If iterable = True, the created DataLoader object is a Python generator
        object, which is iterable using for-range loop.

        If iterable = False, the created DataLoader object provides 
        :code:`start()` and :code:`reset()` method to control the data reading
        process. This mode is designed to be compatible with the 
        :code:`fluid.layers.py_reader` interface. Users can migrate the codes   
        from :code:`fluid.layers.py_reader` to :code:`fluid.io.DataLoader` 
        easily when using iterable=False. 

        Args:  
            feed_list (list(Variable)|tuple(Variable)): feed variable list.
196
                The variables should be created by :code:`fluid.data()`.
Z
Zeng Jinle 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209
            capacity (int): capacity of the queue maintained in DataLoader.
                The unit is batch number. Set larger capacity if your reader 
                is fast. 
            use_double_buffer (bool): whether to use double_buffer_reader. 
                If use_double_buffer=True, the DataLoader would prefetch next 
                batch data asynchronously, so it would speed up data feeding 
                and occupies a little more CPU or GPU memory, i.e., the memory
                of one batch input data. 
            iterable (bool): whether the created DataLoader is iterable. 
            return_list (bool): whether the return value on each device is 
                presented as a list. It is only valid when iterable=True. 
                If return_list=False, the return value on each device would 
                be a dict of str -> LoDTensor, where the key of the dict is 
T
tianshuo78520a 已提交
210
                the name of each fed variables. If return_list=True, the 
Z
Zeng Jinle 已提交
211 212
                return value on each device would be a list(LoDTensor). It is
                recommended to use return_list=False in static graph mode and
213 214 215 216 217 218
                use return_list=True in dygraph mode.  
            use_multiprocess (bool): whether to use multi-process to speed up
                the data loading process in dygraph. Note: this parameter only
                can be used in the dygraph mode. In the static graph mode,
                whether this parameter is set or not has no effect.
                The Default value is False.
Z
Zeng Jinle 已提交
219 220 221 222 223 224 225

        Returns:
            loader (DataLoader): the created DataLoader object.

        Examples:
            
            .. code-block:: python
S
sneaxiy 已提交
226

Z
Zeng Jinle 已提交
227 228
                import paddle.fluid as fluid
                import numpy as np
229

Z
Zeng Jinle 已提交
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
                BATCH_NUM = 10 
                BATCH_SIZE = 16
                EPOCH_NUM = 4

                CLASS_NUM = 10

                ITERABLE = True # whether the created DataLoader object is iterable
                USE_GPU = False # whether to use GPU

                DATA_FORMAT = 'batch_generator' # data format of data source user provides 

                def simple_net(image, label):
                    fc_tmp = fluid.layers.fc(image, size=CLASS_NUM)
                    cross_entropy = fluid.layers.softmax_with_cross_entropy(image, label)
                    loss = fluid.layers.reduce_mean(cross_entropy)
                    sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                    sgd.minimize(loss)
                    return loss

                def get_random_images_and_labels(image_shape, label_shape):
                    image = np.random.random(size=image_shape).astype('float32')
                    label = np.random.random(size=label_shape).astype('int64')
                    return image, label

                # If the data generator yields one sample each time,
                # use DataLoader.set_sample_generator to set the data source.
                def sample_generator_creator(): 
                    def __reader__():
                        for _ in range(BATCH_NUM * BATCH_SIZE):
                            image, label = get_random_images_and_labels([784], [1])
                            yield image, label

                    return __reader__

                # If the data generator yield list of samples each time,
                # use DataLoader.set_sample_list_generator to set the data source.
                def sample_list_generator_creator():
                    def __reader__():
                        for _ in range(BATCH_NUM): 
                            sample_list = []
                            for _ in range(BATCH_SIZE):
                                image, label = get_random_images_and_labels([784], [1])
                                sample_list.append([image, label])

                            yield sample_list

                    return __reader__ 

                # If the data generator yields a batch each time, 
                # use DataLoader.set_batch_generator to set the data source.
                def batch_generator_creator():
                    def __reader__():
                        for _ in range(BATCH_NUM):
                            batch_image, batch_label = get_random_images_and_labels([BATCH_SIZE, 784], [BATCH_SIZE, 1]) 
                            yield batch_image, batch_label
H
Huihuang Zheng 已提交
285

Z
Zeng Jinle 已提交
286
                    return __reader__
287

Z
Zeng Jinle 已提交
288 289 290 291 292
                # If DataLoader is iterable, use for loop to train the network 
                def train_iterable(exe, prog, loss, loader):
                    for _ in range(EPOCH_NUM):
                        for data in loader():
                            exe.run(prog, feed=data, fetch_list=[loss])
293

Z
Zeng Jinle 已提交
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
                # If DataLoader is not iterable, use start() and reset() method to control the process 
                def train_non_iterable(exe, prog, loss, loader):
                    for _ in range(EPOCH_NUM):
                        loader.start() # call DataLoader.start() before each epoch starts
                        try:
                            while True:
                                exe.run(prog, fetch_list=[loss])
                        except fluid.core.EOFException:
                            loader.reset() # call DataLoader.reset() after catching EOFException 

                def set_data_source(loader, places):
                    if DATA_FORMAT == 'sample_generator':
                        loader.set_sample_generator(sample_generator_creator(), batch_size=BATCH_SIZE, drop_last=True, places=places)
                    elif DATA_FORMAT == 'sample_list_generator':
                        loader.set_sample_list_generator(sample_list_generator_creator(), places=places)
                    elif DATA_FORMAT == 'batch_generator':
                        loader.set_batch_generator(batch_generator_creator(), places=places)
                    else:
                        raise ValueError('Unsupported data format')
313

314 315
                image = fluid.data(name='image', shape=[None, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
316

Z
Zeng Jinle 已提交
317 318
                # Define DataLoader 
                loader = fluid.io.DataLoader.from_generator(feed_list=[image, label], capacity=16, iterable=ITERABLE)
319

Z
Zeng Jinle 已提交
320 321
                # Define network
                loss = simple_net(image, label)
S
sneaxiy 已提交
322

Z
Zeng Jinle 已提交
323 324 325 326 327 328 329 330 331
                # Set data source of DataLoader
                #
                # If DataLoader is iterable, places must be given and the number of places must be the same with device number.  
                #  - If you are using GPU, call `fluid.cuda_places()` to get all GPU places. 
                #  - If you are using CPU, call `fluid.cpu_places()` to get all CPU places. 
                # 
                # If DataLoader is not iterable, places can be None.
                places = fluid.cuda_places() if USE_GPU else fluid.cpu_places()
                set_data_source(loader, places)
S
sneaxiy 已提交
332

Z
Zeng Jinle 已提交
333 334
                exe = fluid.Executor(places[0])
                exe.run(fluid.default_startup_program())
H
Huihuang Zheng 已提交
335

Z
Zeng Jinle 已提交
336
                prog = fluid.CompiledProgram(fluid.default_main_program()).with_data_parallel(loss_name=loss.name)
337

Z
Zeng Jinle 已提交
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
                if loader.iterable:
                    train_iterable(exe, prog, loss, loader)
                else:
                    train_non_iterable(exe, prog, loss, loader)


                '''
                Users can use return_list = True in dygraph mode. 
                '''
                with fluid.dygraph.guard(places[0]):
                    loader = fluid.io.DataLoader.from_generator(capacity=2, return_list=True)
                    set_data_source(loader, places[0]) 
                    for image, label in loader():
                        relu = fluid.layers.relu(image)
                        assert image.shape == [BATCH_SIZE, 784] 
                        assert label.shape == [BATCH_SIZE, 1]
                        assert relu.shape == [BATCH_SIZE, 784]
        """
356 357 358 359 360 361 362
        if in_dygraph_mode():
            return DygraphGeneratorLoader(feed_list, capacity,
                                          use_double_buffer, iterable,
                                          return_list, use_multiprocess)
        else:
            return GeneratorLoader(feed_list, capacity, use_double_buffer,
                                   iterable, return_list)
Z
Zeng Jinle 已提交
363 364 365 366 367 368

    @staticmethod
    def from_dataset(dataset, places, drop_last=True):
        """
        Create an iterable DataLoader object for loading data from Dataset.    
        Dataset is only supported in Linux system currently.
369

Z
Zeng Jinle 已提交
370 371 372 373 374 375 376
        Args:
            dataset (InMemoryDataset|QueueDataset): the dataset object.
            places (list(CUDAPlace)|list(CPUPlace)): places where the result 
                data should be converted.   
            drop_last (bool): whether to drop the last batch whose sample 
                number is less than batch size. If drop_last = True, they
                would be dropped. If drop_last = False, they would be kept. 
377

Z
Zeng Jinle 已提交
378 379 380
        Returns:
            loader (DataLoader): the created DataLoader object, which can be 
                treated as a Python generator.   
381

Z
Zeng Jinle 已提交
382 383 384
        Examples:

            .. code-block:: python
385

Z
Zeng Jinle 已提交
386
                import paddle.fluid as fluid
387

388 389
                image = fluid.data(name='image', shape=[None, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
390

Z
Zeng Jinle 已提交
391 392 393 394 395
                dataset = fluid.DatasetFactory().create_dataset("QueueDataset")
                dataset.set_batch_size(32)
                dataset.set_filelist(['a.txt', 'b.txt', 'c.txt'])
                dataset.set_use_var([image, label])
                dataset.set_pipe_command('cat') 
396

Z
Zeng Jinle 已提交
397 398 399
                loader = fluid.io.DataLoader.from_dataset(dataset, fluid.cpu_places())
        """
        return DatasetLoader(dataset, places, drop_last)
S
sneaxiy 已提交
400

S
sneaxiy 已提交
401

402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
class DygraphGeneratorLoader(DataLoaderBase):
    """
    The GeneratorLoader of dygraph

    The multiprocess dygraph GeneratorLoader's most functions are different from 
    static graph GeneratorLoader, Separate implementation to keep code readable.
    """

    def __init__(self,
                 feed_list=None,
                 capacity=None,
                 use_double_buffer=True,
                 iterable=True,
                 return_list=True,
                 use_multiprocess=False):
        self._batch_reader = None
        self._places = None
        self._feed_list = feed_list

        if not capacity:
            raise ValueError("Please give value to capacity.")
        self._capacity = capacity
        self._use_double_buffer = use_double_buffer

        if not iterable:
            logging.warning(
                "Please NOTE: dygraph can support iterable mode only. Change to iterable mode."
            )
        self._iterable = True
        if not return_list:
            logging.warning(
                "Please NOTE: dygraph can support return as list only. Change to return as list."
            )
        self._return_list = True

        # NOTE: the multiprocessing in different platform is incompatible, we will solve it later
        self._use_multiprocess = use_multiprocess
        if self._use_multiprocess and (sys.platform == 'darwin' or
                                       sys.platform == 'win32'):
            logging.warning(
                "NOTE: The multiprocess mode does not currently support MacOs and Windows."
            )
            self._use_multiprocess = False

        if self._use_multiprocess:
            # NOTE: the multiprocessing.Queue used to save loading data in self._process
            self._data_queue = None
            # NOTE: this process is used to load data asynchronously from self._batch_reader
            self._process = None

        # NOTE: the C++ LoDTensorBlockingQueue instance
        self._blocking_queue = None
        # NOTE: 1. In multiprocess mode, this thread is used to get next batch data from
        # self._data_queue, then push it into self._blocking_queue; 2. In singleprocess
        # mode, this thread is used to get next batch data from self._batch_reader, then 
        # push it into self._blocking_queue
        self._thread = None

    @property
    def queue(self):
        return self._blocking_queue

    @property
    def iterable(self):
        return self._iterable

468 469 470 471 472 473 474 475 476 477
    def _clear_and_remove_data_queue(self):
        if self._data_queue is not None:
            while True:
                try:
                    self._data_queue.get_nowait()
                except queue.Empty:
                    break
            global multiprocess_queue_set
            multiprocess_queue_set.remove(self._data_queue)

478 479 480 481 482 483 484 485 486 487 488 489 490
    def _wait_thread_ends(self):
        thread = self._thread
        if thread is not None:
            self._blocking_queue.close()
            thread.join()

    def _wait_process_ends(self):
        process = self._process
        if process is not None:
            process.join()
            # erase process id
            core._erase_process_pid(id(self))

491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
    def _set_child_signal_handler(self):
        core._set_process_pid(id(self), self._process.pid)
        current_handler = signal.getsignal(signal.SIGCHLD)
        if not callable(current_handler):
            current_handler = None

        def __handler__(signum, frame):
            # NOTE: Here the signum is SIGDHLD, when the child process exits, this handler
            # will be called whenever the child process exits normally or abnormally.
            core._throw_error_if_process_failed()
            if current_handler is not None:
                current_handler(signum, frame)

        signal.signal(signal.SIGCHLD, __handler__)

506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
    def _init_iterable(self):
        self._wait_thread_ends()
        if self._use_multiprocess:
            self._wait_process_ends()
        self._var_names = []
        self._shapes = []
        self._dtypes = []
        self._need_check_feed = []
        self._blocking_queue = core.init_lod_tensor_blocking_queue(
            core.Variable(), self._capacity)
        self._reader = core.create_py_reader(
            self.queue, self._var_names, self._shapes, self._dtypes,
            self._need_check_feed, self._places, self._use_double_buffer)

    def _start(self):
        if self._use_multiprocess:
522 523 524
            # clear old _data_queue and remove it from multiprocess_queue_set
            self._clear_and_remove_data_queue()
            # set data_queue and process
525
            self._data_queue = multiprocessing.Queue(self._capacity)
526 527 528
            # add _data_queue into global queue set
            global multiprocess_queue_set
            multiprocess_queue_set.add(self._data_queue)
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
            self._process = multiprocessing.Process(
                target=self._reader_process_loop)
            self._process.daemon = True
            self._process.start()

            # Set child process signal handler
            # NOTE: [ avoiding hang ] 1. if the child process dies due to bus error/segfault
            # or just hang, the main process will hang waiting for data, so here need to deal 
            # with SIGSEGV and SIGBUS of child process; 2. if the main process end before child
            # process, it shuts the all its daemonic children down with a SIGTERM (instead of 
            # joining them without a timeout), so here nedd to deal with SIGTERM.
            self._set_child_signal_handler()

            # Set reader_thread
            self._thread_done_event = threading.Event()
            self._thread = threading.Thread(
                target=self._reader_thread_loop_with_process)
            self._thread.daemon = True
            self._thread.start()
        else:
            self._thread = threading.Thread(target=self._reader_thread_loop)
            self._thread.daemon = True
            self._thread.start()

    def _reset(self):
        self._reader.reset()
        self._wait_thread_ends()
        if self._use_multiprocess:
            self._wait_process_ends()

    def __iter__(self):
        assert self.iterable, "DataLoader is not iterable"
        assert self._batch_reader is not None, \
            "Data source of DataLoader has not set yet"

        self._init_iterable()
        self._start()
        return self

    def __next__(self):
        try:
            return self._reader.read_next_var_list()
        except StopIteration:
            self._reset()
            six.reraise(*sys.exc_info())

    @classmethod
    def _check_input_array(cls, item):
        arr = np.array(item)
        if arr.dtype == np.object:
            raise TypeError(
                "\n\tFaild to convert input data to a regular ndarray :\n\t* Usually "
                "this means the input data contains nested lists with different lengths. "
                "\n\t* Check the reader function passed to 'decorate_batch_generator'"
                " to locate the data causes this issue.\n\t* Please consider using "
                "'fluid.create_lod_tensor' to convert it to a LoD-Tensor.")

586 587 588 589 590 591 592 593 594
    def _exit_thread_expectedly(self):
        self._thread_done_event.set()
        self._blocking_queue.close()

    def _exit_thread_unexpectedly(self):
        self._thread_done_event.set()
        self._blocking_queue.kill()
        logging.error("DataLoader reader thread raised an exception!")

595 596 597 598 599
    def _reader_process_loop(self):
        try:
            # set signal handler
            core._set_process_signal_handler()

600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
            # child process clear function at exit
            def _cleanup():
                # clear memory map files in child process
                core._cleanup_mmap_fds()

            # NOTE: [ mmap files clear ] When the child process exits unexpectedly,
            # some shared memory objects may have been applied for but have not yet
            # been put into the inter-process Queue. This part of the object needs
            # to be cleaned up when the process ends.
            CleanupFuncRegistrar.register(_cleanup)

            for batch in self._batch_reader():
                tensor_list = core._convert_to_tensor_list(batch)
                self._data_queue.put(tensor_list)
                core._remove_tensor_list_mmap_fds(tensor_list)
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
            self._data_queue.put(None)
        except KeyboardInterrupt:
            # NOTE: Main process will raise KeyboardInterrupt anyways, ignore it in child process
            pass
        except:
            six.reraise(*sys.exc_info())

    def _reader_thread_loop_with_process(self):
        while not self._thread_done_event.is_set():
            try:
                # NOTE: [ avoid hanging ] Even with carefully designed data dependencies 
                # (i.e., a put() always corresponding to a get()), hanging on get() can 
                # still happen when data in queue is corrupted (e.g., due to 
                # Queue.cancel_join_thread or unexpected exit). So we set a timeout whenever 
                # we try to get data from `data_queue`
630 631 632 633 634 635 636
                # NOTE: [ avoid failed quickly ] Here, the time setting of QUEUE_GET_TIMEOUT
                # is relatively long, currently it is 60 seconds, because in some models,
                # if the reader child process starts with a heavy burden, the child process
                # has no enough time to put the data in the queue when the main process
                # start trying to get data from queue. At this time, the child thread needs
                # to wait slightly longer
                tensor_list = self._data_queue.get(timeout=QUEUE_GET_TIMEOUT)
637
            except queue.Empty:
638 639 640 641
                self._exit_thread_unexpectedly()
                raise RuntimeError(
                    "DataLoader reader thread has not read data for a long time (60s)."
                )
642 643

            if not self._thread_done_event.is_set():
644
                if tensor_list is not None:
645 646
                    try:
                        array = core.LoDTensorArray()
647 648
                        for tensor in tensor_list:
                            array.append(tensor)
649 650 651
                        if not self._blocking_queue.push(array):
                            self._blocking_queue.close()
                    except:
652
                        self._exit_thread_unexpectedly()
653 654
                        six.reraise(*sys.exc_info())
                else:
655
                    self._exit_thread_expectedly()
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717

    def _reader_thread_loop(self):
        try:
            for sample in self._batch_reader():
                array = core.LoDTensorArray()
                for item in sample:
                    if not isinstance(item, core.LoDTensor):
                        self._check_input_array(item)
                        tmp = core.LoDTensor()
                        tmp.set(item, core.CPUPlace())
                        item = tmp

                    array.append(item)

                if not self._blocking_queue.push(array):
                    break

            self._blocking_queue.close()
            self._thread = None
        except Exception:
            self._blocking_queue.kill()
            self._thread = None
            logging.warning(
                "DygraphDataLoader reader thread raised an exception.")
            six.reraise(*sys.exc_info())

    def set_sample_generator(self,
                             reader,
                             batch_size,
                             drop_last=True,
                             places=None):
        assert batch_size > 0, "batch_size must be larger than 0"
        self.set_sample_list_generator(
            paddle.batch(
                reader, batch_size=batch_size, drop_last=drop_last),
            places=places)
        return self

    def set_sample_list_generator(self, reader, places=None):
        def __batch_reader_impl__():
            for batch in reader():
                slots = []
                for items in batch:
                    for i, item in enumerate(items):
                        if len(slots) < len(items):
                            slots.append([item])
                        else:
                            slots[i].append(item)
                yield slots

        self.set_batch_generator(__batch_reader_impl__, places)
        return self

    def set_batch_generator(self, reader, places=None):
        self._batch_reader = reader
        assert places is not None, "Places cannot be None when DataLoader is iterable"
        self._places = _convert_places(places)
        assert len(self._places) == 1, \
            "Number of places must be 1 in dygraph mode"
        return self


Z
Zeng Jinle 已提交
718
class GeneratorLoader(DataLoaderBase):
S
sneaxiy 已提交
719
    def __init__(self,
720 721
                 feed_list=None,
                 capacity=None,
S
sneaxiy 已提交
722
                 use_double_buffer=True,
723 724
                 iterable=True,
                 return_list=False):
S
sneaxiy 已提交
725
        self._tensor_reader = None
Z
Zeng Jinle 已提交
726
        self._places = None
S
sneaxiy 已提交
727
        self._thread = None
728
        self._queue = None
729 730 731
        self._feed_list = feed_list
        if not capacity:
            raise ValueError("Please give value to capacity.")
732 733 734 735
        self._iterable = iterable
        self._return_list = return_list
        if not self._feed_list:
            raise Exception("Feed list must be given under static mode.")
S
sneaxiy 已提交
736 737 738 739
        self._use_double_buffer = use_double_buffer
        self._capacity = capacity
        if not self._iterable:
            self._init_non_iterable()
S
sneaxiy 已提交
740

Z
Zeng Jinle 已提交
741
    def _wait_thread_ends(self):
742
        # Get self._thread first to prevent data race, because __thread_main__
Z
Zeng Jinle 已提交
743 744 745 746 747 748 749 750
        # would set self._thread be None at the end
        thread = self._thread
        if thread is not None and self._iterable:
            self._queue.close()
            thread.join()

    def _init_iterable(self):
        self._wait_thread_ends()
751 752 753 754 755 756
        self._var_names = [v.name for v in self._feed_list]
        self._shapes = [v.shape for v in self._feed_list]
        self._dtypes = [v.dtype for v in self._feed_list]
        self._need_check_feed = [
            v.desc.need_check_feed() for v in self._feed_list
        ]
S
sneaxiy 已提交
757 758 759
        self._queue = core.init_lod_tensor_blocking_queue(core.Variable(),
                                                          self._capacity)
        self._reader = core.create_py_reader(
760 761
            self.queue, self._var_names, self._shapes, self._dtypes,
            self._need_check_feed, self._places, self._use_double_buffer)
S
sneaxiy 已提交
762 763 764 765 766 767 768

    def _init_non_iterable(self):
        lod_levels = []
        dtypes = []
        shape_concat = []
        ranks = []
        shapes = []
769
        need_check_feed = []
S
sneaxiy 已提交
770 771 772 773 774 775 776

        for feed_data in self._feed_list:
            dtypes.append(feed_data.dtype)
            shape_concat.extend(feed_data.shape)
            ranks.append(len(feed_data.shape))
            shapes.append(feed_data.shape)
            lod_levels.append(feed_data.lod_level)
777
            need_check_feed.append(int(feed_data.desc.need_check_feed()))
S
sneaxiy 已提交
778

Z
Zeng Jinle 已提交
779 780 781 782
        queue_name = data_loader_unique_name_generator(
            'lod_tensor_blocking_queue')
        reader_name = data_loader_unique_name_generator('create_py_reader')
        double_buffer_name = data_loader_unique_name_generator('double_buffer')
S
sneaxiy 已提交
783

S
sneaxiy 已提交
784
        var = global_scope().var(queue_name)
S
sneaxiy 已提交
785 786 787 788 789
        self._queue = core.init_lod_tensor_blocking_queue(var, self._capacity)

        startup_blk = default_startup_program().current_block()
        startup_var = startup_blk.create_var(name=reader_name)

790
        dtype_int = [int(t) for t in dtypes]
S
sneaxiy 已提交
791 792 793 794 795 796 797
        startup_blk.append_op(
            type='create_py_reader',
            inputs={'blocking_queue': [queue_name]},
            outputs={'Out': [startup_var]},
            attrs={
                'shape_concat': shape_concat,
                'lod_levels': lod_levels,
798 799
                'dtypes': dtype_int,
                'need_check_feed': need_check_feed,
S
sneaxiy 已提交
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
                'ranks': ranks
            })

        startup_var.desc.set_dtypes(dtypes)
        startup_var.persistable = True

        main_prog_var = _copy_reader_var_(
            default_main_program().current_block(), startup_var)

        main_prog_var.stop_gradient = True
        main_prog_var.persistable = True

        reader = monkey_patch_reader_methods(main_prog_var)
        if self._use_double_buffer:
            double_buffer_reader = double_buffer(
                reader, name=double_buffer_name)
            # we return a double buffer reader. However, the reset method comes from
            # py_reader.
            double_buffer_reader.reset = reader.reset
            reader = double_buffer_reader

        self._reader = reader

        default_main_program().current_block().append_op(
            type='read',
            inputs={'Reader': [self._reader]},
            outputs={'Out': self._feed_list})

    @property
    def queue(self):
        return self._queue

    @property
    def iterable(self):
        return self._iterable
S
sneaxiy 已提交
835

Z
Zeng Jinle 已提交
836 837
    def __iter__(self):
        assert self.iterable, "DataLoader is not iterable"
S
sneaxiy 已提交
838
        assert self._tensor_reader is not None, \
Z
Zeng Jinle 已提交
839
            "Data source of DataLoader has not set yet"
S
sneaxiy 已提交
840

Z
Zeng Jinle 已提交
841
        self._init_iterable()
S
sneaxiy 已提交
842
        self._start()
Z
Zeng Jinle 已提交
843 844 845 846
        return self

    def __next__(self):
        try:
847 848
            if self._return_list:
                return self._reader.read_next_list()
849
            else:
850
                return self._reader.read_next()
Z
Zeng Jinle 已提交
851 852 853 854 855 856
        except StopIteration:
            self._queue.close()
            self._reset()
            six.reraise(*sys.exc_info())

    def start(self):
857 858
        assert not self._iterable, "start() cannot be called when DataLoader is iterable"
        self._start()
Z
Zeng Jinle 已提交
859 860

    def reset(self):
861 862
        assert not self._iterable, "reset() cannot be called when DataLoader is iterable"
        self._reset()
Z
Zeng Jinle 已提交
863

864 865 866 867 868 869 870 871 872 873 874
    @classmethod
    def _check_input_array(cls, item):
        arr = np.array(item)
        if arr.dtype == np.object:
            raise TypeError((
                "\n\tFaild to convert input data to a regular ndarray :\n\t* Usually "
                "this means the input data contains nested lists with different lengths. "
                "\n\t* Check the reader function passed to 'decorate_batch_generator'"
                " to locate the data causes this issue.\n\t* Please consider using "
                "'fluid.create_lod_tensor' to convert it to a LoD-Tensor."))

Z
Zeng Jinle 已提交
875 876 877 878 879 880 881
    def _start(self):
        def __thread_main__():
            try:
                for tensors in self._tensor_reader():
                    array = core.LoDTensorArray()
                    for item in tensors:
                        if not isinstance(item, core.LoDTensor):
882
                            self._check_input_array(item)
Z
Zeng Jinle 已提交
883 884 885 886 887 888 889 890 891 892 893 894
                            tmp = core.LoDTensor()
                            tmp.set(item, core.CPUPlace())
                            item = tmp

                        array.append(item)

                    if not self._queue.push(array):
                        break

                self._queue.close()
                self._thread = None
            except Exception as ex:
Z
Zeng Jinle 已提交
895
                self._queue.kill()
Z
Zeng Jinle 已提交
896 897 898 899 900 901 902
                self._thread = None
                logging.warn('Your reader has raised an exception!')
                six.reraise(*sys.exc_info())

        self._thread = threading.Thread(target=__thread_main__)
        self._thread.daemon = True
        self._thread.start()
S
sneaxiy 已提交
903

S
sneaxiy 已提交
904
    def _reset(self):
905
        self._queue.close()
Z
Zeng Jinle 已提交
906 907 908 909
        thread = self._thread
        if thread is not None:
            thread.join()

910 911
        self._reader.reset()

Z
Zeng Jinle 已提交
912 913 914 915 916 917
    def set_sample_generator(self,
                             reader,
                             batch_size,
                             drop_last=True,
                             places=None):
        assert batch_size > 0, "batch_size must be larger than 0"
918 919 920 921 922 923 924
        has_lod = False
        for f in self._feed_list:
            if f.lod_level != 0:
                has_lod = True
                break

        if has_lod:
925 926 927 928 929
            self.set_sample_list_generator(
                paddle.batch(
                    reader, batch_size=batch_size, drop_last=drop_last),
                places=places)
        else:
930 931 932 933 934 935 936
            reader = BatchedTensorProvider(
                feed_list=self._feed_list,
                place=core.CPUPlace(),
                batch_size=batch_size,
                generator=reader,
                drop_last=drop_last)
            self.set_batch_generator(reader, places=places)
Z
Zeng Jinle 已提交
937 938 939
        return self

    def set_sample_list_generator(self, reader, places=None):
940 941 942 943
        with program_guard(Program(), Program()):
            feeder = DataFeeder(
                feed_list=self._feed_list, place=core.CPUPlace())
            paddle_reader = feeder.decorate_reader(reader, multi_devices=False)
Z
Zeng Jinle 已提交
944

945 946 947
        def __tensor_reader_impl__():
            for slots in paddle_reader():
                yield [slots[var.name] for var in self._feed_list]
Z
Zeng Jinle 已提交
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986

        self.set_batch_generator(__tensor_reader_impl__, places)
        return self

    def set_batch_generator(self, reader, places=None):
        self._tensor_reader = reader
        if self._iterable:
            assert places is not None, "Places cannot be None when DataLoader is iterable"
            self._places = _convert_places(places)
        else:
            if places is not None:
                logging.info(
                    'places would be ommited when DataLoader is not iterable')
        return self


class PyReader(DataLoaderBase):
    """
    Create a reader object for data feeding in Python. 
    Data would be prefetched using Python thread and be pushed
    into a queue asynchronously. Data in the queue would be extracted 
    automatically when `Executor.run(...)` is called.

    Args:  
        feed_list (list(Variable)|tuple(Variable)): feed variable list.
            The variables should be created by :code:`fluid.layers.data()`.
        capacity (int): capacity of the queue maintained in PyReader.
            The unit is batch number. Set larger capacity if your reader 
            is fast. 
        use_double_buffer (bool): whether to use double_buffer_reader. 
            If use_double_buffer=True, PyReader would prefetch next 
            batch data asynchronously, so it would speed up data feeding 
            and occupies a little more CPU or GPU memory, i.e., the memory
            of one batch input data. 
        iterable (bool): whether the created PyReader is iterable. 
        return_list (bool): whether the return value on each device is 
            presented as a list. It is only valid when iterable=True. 
            If return_list=False, the return value on each device would 
            be a dict of str -> LoDTensor, where the key of the dict is 
T
tianshuo78520a 已提交
987
            the name of each fed variables. If return_list=True, the 
Z
Zeng Jinle 已提交
988 989 990 991 992
            return value on each device would be a list(LoDTensor). It is
            recommended to use return_list=False in static graph mode and
            use return_list=True in dygraph mode. 

    Returns:
G
guofei 已提交
993 994 995 996
        the created reader object.

    Return type:
        reader(Reader)
Z
Zeng Jinle 已提交
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015

    Examples:
        1. If iterable = False, the created PyReader object is almost the
           same as :code:`fluid.layers.py_reader()`. Operators would be 
           inserted into the program. User should call :code:`start()` 
           before each epoch and catch :code:`fluid.core.EOFException`
           thrown by :code:`Executor.run()` when epoch ends. Once the 
           exception is caught, user should call :code:`reset()` to reset 
           the reader manually.

        .. code-block:: python

           import paddle
           import paddle.fluid as fluid
           import numpy as np

           EPOCH_NUM = 3
           ITER_NUM = 5
           BATCH_SIZE = 3
G
guofei 已提交
1016 1017 1018 1019 1020
           
           def network(image, label):
               # User-defined network, here is an example of softmax regression.
               predict = fluid.layers.fc(input=image, size=10, act='softmax')           
               return fluid.layers.cross_entropy(input=predict, label=label)
Z
Zeng Jinle 已提交
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031

           def reader_creator_random_image_and_label(height, width):
               def reader():
                   for i in range(ITER_NUM):
                       fake_image = np.random.uniform(low=0,
                                                      high=255,
                                                      size=[height, width])
                       fake_label = np.ones([1])
                       yield fake_image, fake_label
               return reader

G
guofei 已提交
1032 1033
           image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
           label = fluid.data(name='label', shape=[None, 1], dtype='int64')
Z
Zeng Jinle 已提交
1034 1035 1036 1037 1038 1039 1040 1041

           reader = fluid.io.PyReader(feed_list=[image, label],
                                      capacity=4,
                                      iterable=False)

           user_defined_reader = reader_creator_random_image_and_label(784, 784)
           reader.decorate_sample_list_generator(
               paddle.batch(user_defined_reader, batch_size=BATCH_SIZE))
G
guofei 已提交
1042 1043
           loss = network(image, label)
           executor = fluid.Executor(fluid.CPUPlace())
Z
Zeng Jinle 已提交
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
           executor.run(fluid.default_startup_program())
           for i in range(EPOCH_NUM):
               reader.start()
               while True:
                   try:
                       executor.run(feed=None)
                   except fluid.core.EOFException:
                       reader.reset()
                       break

 
        2. If iterable=True, the created PyReader object is decoupled with
           the program. No operator would be inserted into the program. 
           In this case, the created reader is a Python generator, which 
           is iterable. User should feed the data yielded from PyReader 
           object into :code:`Executor.run(feed=...)`.  

        .. code-block:: python

           import paddle
           import paddle.fluid as fluid
           import numpy as np

           EPOCH_NUM = 3
           ITER_NUM = 5
           BATCH_SIZE = 10

G
guofei 已提交
1071 1072 1073 1074 1075
           def network(image, label):
               # User-defined network, here is an example of softmax regression.
               predict = fluid.layers.fc(input=image, size=10, act='softmax')           
               return fluid.layers.cross_entropy(input=predict, label=label)

Z
Zeng Jinle 已提交
1076 1077 1078
           def reader_creator_random_image(height, width):
               def reader():
                   for i in range(ITER_NUM):
G
guofei 已提交
1079 1080 1081
                       fake_image = np.random.uniform(low=0, high=255, size=[height, width])
                       fake_label = np.ones([1])
                       yield fake_image, fake_label 
Z
Zeng Jinle 已提交
1082 1083
               return reader

G
guofei 已提交
1084 1085 1086
           image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
           label = fluid.data(name='label', shape=[None, 1], dtype='int64')
           reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True, return_list=False)
Z
Zeng Jinle 已提交
1087 1088 1089 1090

           user_defined_reader = reader_creator_random_image(784, 784)
           reader.decorate_sample_list_generator(
               paddle.batch(user_defined_reader, batch_size=BATCH_SIZE),
G
guofei 已提交
1091 1092 1093 1094 1095 1096
                   fluid.core.CPUPlace())
           
           loss = network(image, label)
           executor = fluid.Executor(fluid.CPUPlace())
           executor.run(fluid.default_startup_program())
           
Z
Zeng Jinle 已提交
1097 1098
           for _ in range(EPOCH_NUM):
               for data in reader():
G
guofei 已提交
1099
                   executor.run(feed=data, fetch_list=[loss])
Z
Zeng Jinle 已提交
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153


        3. If return_list=True, the return values would be presented as list instead of dict. 
           This is usually used in dygraph mode.

        .. code-block:: python

           import paddle
           import paddle.fluid as fluid
           import numpy as np

           ITER_NUM = 5
           BATCH_SIZE = 10

           def reader_creator_random_image(height, width):
               def reader():
                   for i in range(ITER_NUM):
                       yield np.random.uniform(low=0, high=255, size=[height, width]), \
                           np.random.random_integers(low=0, high=9, size=[1])
               return reader

           place = fluid.CPUPlace()
           with fluid.dygraph.guard(place):
               py_reader = fluid.io.PyReader(capacity=2, return_list=True)
               user_defined_reader = reader_creator_random_image(784, 784)
               py_reader.decorate_sample_list_generator(
                   paddle.batch(user_defined_reader, batch_size=BATCH_SIZE),
                   place)
               for image, label in py_reader():
                   relu = fluid.layers.relu(image)
    """

    def __init__(self,
                 feed_list=None,
                 capacity=None,
                 use_double_buffer=True,
                 iterable=True,
                 return_list=False):
        self._loader = DataLoader.from_generator(
            feed_list, capacity, use_double_buffer, iterable, return_list)

    @property
    def queue(self):
        return self._loader.queue

    @property
    def iterable(self):
        return self._loader.iterable

    def __iter__(self):
        return self._loader.__iter__()

    def __next__(self):
        return self._loader.__next__()
S
sneaxiy 已提交
1154 1155

    def start(self):
S
add doc  
sneaxiy 已提交
1156 1157 1158
        '''
        Start the data feeding thread. 
        Can only call when the reader object is not iterable.  
1159
        
G
guofei 已提交
1160 1161
	Example:
	    .. code-block:: python
Z
Zeng Jinle 已提交
1162
    
H
Huihuang Zheng 已提交
1163 1164 1165 1166
                import paddle
                import paddle.fluid as fluid
                import numpy as np

1167 1168 1169 1170 1171 1172
                BATCH_SIZE = 10

                def generator():
                    for i in range(5):
                        yield np.random.uniform(low=0, high=255, size=[784, 784]),

G
guofei 已提交
1173
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
1174 1175 1176 1177
                reader = fluid.io.PyReader(feed_list=[image], capacity=4, iterable=False)
                reader.decorate_sample_list_generator(
                    paddle.batch(generator, batch_size=BATCH_SIZE))

G
guofei 已提交
1178
                executor = fluid.Executor(fluid.CPUPlace())
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
                executor.run(fluid.default_startup_program())
                for i in range(3):
                    reader.start()
                    while True:
                        try:
                            executor.run(feed=None)
                        except fluid.core.EOFException:
                            reader.reset()
                            break

Z
Zeng Jinle 已提交
1189 1190
	    '''
        self._loader.start()
S
sneaxiy 已提交
1191

S
sneaxiy 已提交
1192
    def reset(self):
S
add doc  
sneaxiy 已提交
1193 1194 1195
        '''
        Reset the reader object when :code:`fluid.core.EOFException` raises. 
        Can only call when the reader object is not iterable.
1196 1197 1198 1199
        
        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1200 1201 1202 1203
                import paddle
                import paddle.fluid as fluid
                import numpy as np

1204 1205 1206 1207 1208 1209
                BATCH_SIZE = 10

                def generator():
                    for i in range(5):
                        yield np.random.uniform(low=0, high=255, size=[784, 784]),

G
guofei 已提交
1210
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
1211 1212 1213 1214
                reader = fluid.io.PyReader(feed_list=[image], capacity=4, iterable=False)
                reader.decorate_sample_list_generator(
                    paddle.batch(generator, batch_size=BATCH_SIZE))

G
guofei 已提交
1215
                executor = fluid.Executor(fluid.CPUPlace())
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
                executor.run(fluid.default_startup_program())
                for i in range(3):
                    reader.start()
                    while True:
                        try:
                            executor.run(feed=None)
                        except fluid.core.EOFException:
                            reader.reset()
                            break        

S
add doc  
sneaxiy 已提交
1226
        '''
Z
Zeng Jinle 已提交
1227
        self._loader.reset()
S
sneaxiy 已提交
1228

S
sneaxiy 已提交
1229 1230 1231 1232 1233 1234 1235 1236 1237
    def decorate_sample_generator(self,
                                  sample_generator,
                                  batch_size,
                                  drop_last=True,
                                  places=None):
        '''
        Set the data source of the PyReader object.
        
        The provided :code:`sample_generator` should be a Python generator,
1238
        which yields list(numpy.ndarray)-typed data of each sample.
S
sneaxiy 已提交
1239 1240 1241 1242

        :code:`places` must be set when the PyReader object is iterable.

        If all inputs have no lods, this method is faster than 
S
sneaxiy 已提交
1243
        :code:`decorate_sample_list_generator(paddle.batch(sample_generator, ...))` .
S
sneaxiy 已提交
1244 1245 1246

        Args:
            sample_generator (generator): Python generator that yields
1247
                list(numpy.ndarray)-typed sample data.
S
sneaxiy 已提交
1248 1249 1250 1251 1252
            batch_size (int): batch size. Must be larger than 0.
            drop_last (bool): Whether to drop the last batch when sample number
                is less than batch_size. 
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
                be provided when PyReader is iterable.
1253 1254 1255 1256

        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1257 1258 1259
                import paddle.fluid as fluid
                import numpy as np

1260 1261 1262
                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3
G
guofei 已提交
1263 1264 1265 1266 1267
        
                def network(image, label):
                    # User-defined network, here is an example of softmax regression.
                    predict = fluid.layers.fc(input=image, size=10, act='softmax')           
                    return fluid.layers.cross_entropy(input=predict, label=label)
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278

                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            fake_image = np.random.uniform(low=0,
                                                           high=255,
                                                           size=[height, width])
                            fake_label = np.array([1])
                            yield fake_image, fake_label
                    return generator

G
guofei 已提交
1279 1280
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1281 1282 1283 1284 1285
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
                reader.decorate_sample_generator(user_defined_generator,
                                                 batch_size=BATCH_SIZE,
G
guofei 已提交
1286 1287 1288 1289
                                                 places=[fluid.CPUPlace()])
                loss = network(image, label)
                executor = fluid.Executor(fluid.CPUPlace())
                executor.run(fluid.default_startup_program())
1290 1291 1292

                for _ in range(EPOCH_NUM):
                    for data in reader():
G
guofei 已提交
1293
                        executor.run(feed=data, fetch_list=[loss])
1294
    
S
sneaxiy 已提交
1295
        '''
Z
Zeng Jinle 已提交
1296 1297
        self._loader.set_sample_generator(sample_generator, batch_size,
                                          drop_last, places)
S
sneaxiy 已提交
1298

S
sneaxiy 已提交
1299
    def decorate_sample_list_generator(self, reader, places=None):
S
add doc  
sneaxiy 已提交
1300 1301 1302 1303
        '''
        Set the data source of the PyReader object. 

        The provided :code:`reader` should be a Python generator,
S
sneaxiy 已提交
1304
        which yields list(numpy.ndarray) typed batched data. 
S
add doc  
sneaxiy 已提交
1305 1306 1307 1308
        
        :code:`places` must be set when the PyReader object is iterable.

        Args:
S
sneaxiy 已提交
1309 1310 1311 1312
            reader (generator): Python generator that yields 
                list(numpy.ndarray)-typed batched data. 
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
                be provided when PyReader is iterable.
1313 1314 1315 1316
        
        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1317 1318 1319 1320
                import paddle
                import paddle.fluid as fluid
                import numpy as np

1321 1322 1323 1324
                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3

G
guofei 已提交
1325 1326 1327 1328 1329
                def network(image, label):
                    # User-defined network, here is an example of softmax regression.
                    predict = fluid.layers.fc(input=image, size=10, act='softmax')           
                    return fluid.layers.cross_entropy(input=predict, label=label)

1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            fake_image = np.random.uniform(low=0,
                                                           high=255,
                                                           size=[height, width])
                            fake_label = np.ones([1])
                            yield fake_image, fake_label
                    return generator

G
guofei 已提交
1340 1341
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1342 1343 1344 1345 1346
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
                reader.decorate_sample_list_generator(
                    paddle.batch(user_defined_generator, batch_size=BATCH_SIZE),
G
guofei 已提交
1347 1348 1349 1350 1351
                    fluid.core.CPUPlace())
                
                loss = network(image, label)
                executor = fluid.Executor(fluid.core.CPUPlace())
                executor.run(fluid.default_startup_program())
1352 1353 1354

                for _ in range(EPOCH_NUM):
                    for data in reader():
G
guofei 已提交
1355
                        executor.run(feed=data, fetch_list=[loss])
1356
                 
S
add doc  
sneaxiy 已提交
1357
        '''
Z
Zeng Jinle 已提交
1358
        self._loader.set_sample_list_generator(reader, places)
S
sneaxiy 已提交
1359

S
sneaxiy 已提交
1360
    def decorate_batch_generator(self, reader, places=None):
S
add doc  
sneaxiy 已提交
1361 1362 1363 1364
        '''
        Set the data source of the PyReader object.

        The provided :code:`reader` should be a Python generator,
S
sneaxiy 已提交
1365
        which yields numpy.ndarray-typed or LoDTensor-typed batched data.
S
add doc  
sneaxiy 已提交
1366 1367 1368 1369 1370 1371

        :code:`places` must be set when the PyReader object is iterable.

        Args:
            reader (generator): Python generator that yields LoDTensor-typed
                batched data.
S
sneaxiy 已提交
1372
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
S
sneaxiy 已提交
1373
                be provided when PyReader is iterable.
1374 1375 1376 1377

        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1378 1379 1380
                import paddle.fluid as fluid
                import numpy as np

1381 1382 1383
                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3
G
guofei 已提交
1384 1385 1386 1387 1388
               
                def network(image, label):
                    # User-defined network, here is an example of softmax regression.
                    predict = fluid.layers.fc(input=image, size=10, act='softmax')           
                    return fluid.layers.cross_entropy(input=predict, label=label)
1389 1390 1391 1392 1393 1394 1395 1396

                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            batch_image = np.random.uniform(low=0,
                                                            high=255,
                                                            size=[BATCH_SIZE, height, width])
                            batch_label = np.ones([BATCH_SIZE, 1])
G
guofei 已提交
1397 1398
                            batch_image = batch_image.astype('float32')
                            batch_label = batch_label.astype('int64')
1399 1400 1401
                            yield batch_image, batch_label
                    return generator

G
guofei 已提交
1402 1403
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1404 1405 1406
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
G
guofei 已提交
1407 1408 1409 1410 1411
                reader.decorate_batch_generator(user_defined_generator, fluid.CPUPlace())
                
                loss = network(image, label)
                executor = fluid.Executor(fluid.CPUPlace())
                executor.run(fluid.default_startup_program())
1412 1413 1414

                for _ in range(EPOCH_NUM):
                    for data in reader():
G
guofei 已提交
1415
                        executor.run(feed=data, fetch_list=[loss])
1416

S
add doc  
sneaxiy 已提交
1417
        '''
Z
Zeng Jinle 已提交
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
        self._loader.set_batch_generator(reader, places)


class DatasetLoader(DataLoaderBase):
    def __init__(self, dataset, places, drop_last):
        assert isinstance(dataset,
                          DatasetBase), "dataset must be type of DatasetBase"
        assert not in_dygraph_mode(
        ), "DatasetLoader is not supported in dygraph mode yet"

        thread_num = len(places)

        assert len(dataset.filelist) >= thread_num, \
            "Filelist number of dataset {} must be not less than place number {}".format(len(dataset.filelist), thread_num)

        if dataset.thread_num != 0 and dataset.thread_num != thread_num:
            logging.warn('thread_num {} which is set in Dataset is ignored'.
                         format(dataset.thread_num))

        dataset.set_thread(thread_num)

        if isinstance(dataset,
                      InMemoryDataset) and dataset.queue_num > thread_num:
            logging.warn("queue_num {} which is set in Dataset is ignored".
                         format(dataset.queue_num))
            dataset.set_queue_num(thread_num)

        self._dataset = dataset
        use_slots = [
            slot.name for slot in dataset.proto_desc.multi_slot_desc.slots
            if slot.is_used
        ]

        self._iterable_dataset = core.IterableDatasetWrapper(
            dataset.dataset, use_slots,
            _convert_places(places), dataset.proto_desc.batch_size, drop_last)

    def __iter__(self):
        self._dataset._finish_to_run()
        self._dataset._prepare_to_run()
        self._iterable_dataset._start()
        return self

    def __next__(self):
        return self._iterable_dataset._next()