unary.cc 10.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

// See Note [ Why still include the fluid headers? ]
C
Chen Weihang 已提交
16
#include "paddle/pten/infermeta/unary.h"
17
#include <set>
18 19 20

namespace pten {

21
DenseTensorMeta UnchangedInferMeta(const DenseTensorMeta& x_meta) {
22 23 24
  return x_meta;
}

25
DenseTensorMeta ReductionInferMeta(const DenseTensorMeta& x_meta) {
26
  const auto& out_dims = pten::framework::make_ddim({1});
27
  DenseTensorMeta return_meta(x_meta.dtype, out_dims, x_meta.layout);
28 29 30
  return return_meta;
}

31 32 33
DenseTensorMeta FlattenInferMeta(const DenseTensorMeta& x_meta,
                                 int start_axis,
                                 int stop_axis) {
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
  auto& x_dims = x_meta.dims;
  int in_dims_size = x_dims.size();
  if (start_axis < 0) {
    start_axis = start_axis + in_dims_size;
  }
  if (stop_axis < 0) {
    stop_axis = stop_axis + in_dims_size;
  }
  PADDLE_ENFORCE_GE(stop_axis,
                    start_axis,
                    paddle::platform::errors::InvalidArgument(
                        "The stop_axis should be greater"
                        "than or equal to start_axis."));

  int64_t outer = 1;
  std::vector<int32_t> out_shape;
  out_shape.reserve(in_dims_size - stop_axis + start_axis);

  for (int i = 0; i < start_axis; ++i) {
    out_shape.push_back(x_dims[i]);
  }
  for (int i = start_axis; i <= stop_axis; i++) {
    if (x_dims[i] == -1 || outer == -1) {
      outer = -1;
    } else {
      outer *= x_dims[i];
    }
  }
  out_shape.push_back(outer);
  for (int i = stop_axis + 1; i < in_dims_size; i++) {
    out_shape.push_back(x_dims[i]);
  }
66
  const auto& out_dims = pten::framework::make_ddim(out_shape);
67
  DenseTensorMeta return_meta(x_meta.dtype, out_dims, x_meta.layout);
68 69 70 71 72 73 74 75 76 77

  if (x_dims[0] == return_meta.dims[0]) {
    // Only pass LoD when the first dimension of output and Input(X)
    // are the same.
    return_meta.lod = x_meta.lod;
  }

  return return_meta;
}

78 79 80 81 82 83
DenseTensorMeta CastInferMeta(const DenseTensorMeta& x_meta,
                              const DataType out_dtype) {
  DenseTensorMeta out_meta(out_dtype, x_meta.dims, x_meta.layout);
  return out_meta;
}

Z
zyfncg 已提交
84 85 86
DenseTensorMeta CreateLikeInferMeta(const DenseTensorMeta& x_meta,
                                    DataType dtype,
                                    DataLayout layout) {
87
  return {dtype == DataType::UNDEFINED ? x_meta.dtype : dtype,
88 89 90 91
          x_meta.dims,
          layout == DataLayout::UNDEFINED ? x_meta.layout : layout};
}

92 93 94 95
static pten::framework::DDim ValidateShape(
    const std::vector<int64_t> shape, const pten::framework::DDim& in_dims) {
  const int64_t in_size = pten::framework::product(in_dims);
  auto in_dims_vec = pten::framework::vectorize(in_dims);
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
  bool all_positive = std::all_of(in_dims_vec.cbegin(),
                                  in_dims_vec.cend(),
                                  [](int64_t i) { return i > 0; });
  // only one dimension can be set to -1, whose size will be automatically
  // infered.
  const int64_t unk_dim_val = -1;
  const int64_t copy_dim_val = 0;

  std::vector<int64_t> output_shape(shape.size(), 0);
  int64_t capacity = 1;
  int unk_dim_idx = -1;
  for (size_t i = 0; i < shape.size(); ++i) {
    if (shape[i] == unk_dim_val) {
      PADDLE_ENFORCE_EQ(
          unk_dim_idx,
          -1,
          paddle::platform::errors::InvalidArgument(
              "Only one dimension value of 'shape' in ReshapeOp can "
              "be -1. But received shape = [%s], shape[%d] is also -1.",
115
              pten::framework::make_ddim(shape),
116 117 118 119 120 121 122 123 124 125 126
              i));
      unk_dim_idx = i;
    } else if (shape[i] == copy_dim_val) {
      PADDLE_ENFORCE_LT(
          static_cast<int>(i),
          in_dims.size(),
          paddle::platform::errors::InvalidArgument(
              "The index of 0 in `shape` must be less than "
              "the input tensor X's dimensions. "
              "But received shape = [%s], shape[%d] = 0, X's shape = [%s], "
              "X's dimensions = %d.",
127
              pten::framework::make_ddim(shape),
128 129 130 131 132 133 134 135 136 137 138
              i,
              in_dims,
              in_dims.size()));
    } else {
      PADDLE_ENFORCE_GT(
          shape[i],
          0,
          paddle::platform::errors::InvalidArgument(
              "Each dimension value of 'shape' in ReshapeOp must not "
              "be negative except one unknown dimension. "
              "But received  shape = [%s], shape[%d] = %d.",
139
              pten::framework::make_ddim(shape),
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
              i,
              shape[i]));
    }

    // NOTE all non-zero values will be converted to True (include negative
    // value)
    capacity *= (shape[i] ? shape[i] : in_dims[i]);
    output_shape[i] = (shape[i] ? static_cast<int64_t>(shape[i]) : in_dims[i]);
  }

  if (unk_dim_idx != -1) {
    if (all_positive) {
      // in_size < 0 and is un-determinate in compile time, skip the check,
      // for example, in_dims = [-1, 8, 1, 1], shape = [-1, 3, 8],
      // capacity = -24, in_size = -8, output_shape[0] = 0
      // the following check will fail.
      output_shape[unk_dim_idx] = -in_size / capacity;
      PADDLE_ENFORCE_EQ(
          output_shape[unk_dim_idx] * capacity,
          -in_size,
          paddle::platform::errors::InvalidArgument(
              "The 'shape' attribute in ReshapeOp is invalid. "
              "The input tensor X'size must be divisible by known "
              "capacity of 'shape'. "
              "But received X's shape = [%s], X's size = %d, "
              "'shape' is [%s], known capacity of 'shape' is %d.",
              in_dims,
              in_size,
168
              pten::framework::make_ddim(shape),
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
              capacity));
    } else {
      output_shape[unk_dim_idx] = -1;
    }
  } else {
    if (all_positive) {
      PADDLE_ENFORCE_EQ(
          capacity,
          in_size,
          paddle::platform::errors::InvalidArgument(
              "The 'shape' in ReshapeOp is invalid. "
              "The input tensor X'size must be equal to the capacity of "
              "'shape'. "
              "But received X's shape = [%s], X's size = %d, 'shape' is "
              "[%s], the capacity of 'shape' is %d.",
              in_dims,
              in_size,
186
              pten::framework::make_ddim(shape),
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
              capacity));
    }
  }

  // support reshape with zero-input(input tensor with product(shape) == 0)
  // by now we require that if the input tensor is zero shape, the target
  // shape of output must be zero
  if (in_size == 0) {
    PADDLE_ENFORCE_LE(
        capacity,
        in_size,
        paddle::platform::errors::InvalidArgument(
            "The 'shape' in ReshapeOp is invalid. "
            "The input tensor X's shape = [%s], X's capacity = %d."
            "But the target shape of Out is [%s],  the "
            "capacity of 'Out' is %d.",
            in_dims,
            in_size,
205
            pten::framework::make_ddim(shape),
206 207 208
            capacity));
  }

209
  return pten::framework::make_ddim(output_shape);
210 211
}

212 213
DenseTensorMeta InferMetaFromVecValue(const DenseTensorMeta& x_meta,
                                      const std::vector<int64_t>& shape) {
214 215 216 217 218 219 220
  PADDLE_ENFORCE_EQ(!shape.empty(),
                    true,
                    paddle::platform::errors::InvalidArgument(
                        "The parameter 'shape' in ReshapeOp must be set. "
                        "But received 'shape' is empty."));
  auto x_dims = x_meta.dims;
  auto out_dims = ValidateShape(shape, x_dims);
221
  DenseTensorMeta return_meta(x_meta.dtype, out_dims, x_meta.layout);
222 223 224 225 226 227 228 229
  if (x_dims[0] == return_meta.dims[0]) {
    // Only pass LoD when the first dimension of output and Input(X)
    // are the same.
    return_meta.lod = x_meta.lod;
  }
  return return_meta;
}

230 231 232 233 234
DenseTensorMeta ReshapeInferMeta(const DenseTensorMeta& x_meta,
                                 const ScalarArray& shape) {
  return InferMetaFromVecValue(x_meta, shape.GetData());
}

235 236 237 238 239 240 241 242 243 244
/*  Why not use ReduceInferMeta directly?
    Because we need make InferMetaFunction's args follow the design of api.yaml
*/
DenseTensorMeta SumInferMeta(const DenseTensorMeta& x_meta,
                             const std::vector<int64_t>& axis,
                             DataType dtype,
                             bool keep_dim) {
  return ReduceInferMeta(x_meta, axis, keep_dim, dtype);
}

245 246
DenseTensorMeta ReduceInferMeta(const DenseTensorMeta& x_meta,
                                const std::vector<int64_t>& axis,
247 248
                                bool keep_dim,
                                DataType dtype) {
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
  bool reduce_all = true;
  std::set<int64_t> dims_set(axis.begin(), axis.end());
  for (int64_t i = 0; i < x_meta.dims.size(); ++i) {
    if (dims_set.find(i) == dims_set.end()) {
      reduce_all = false;
      break;
    }
  }

  std::vector<int64_t> out_dim_vector;
  if (keep_dim) {
    for (int64_t i = 0; i < x_meta.dims.size(); ++i) {
      if (reduce_all || dims_set.find(i) != dims_set.end()) {
        out_dim_vector.push_back(1);
      } else {
        out_dim_vector.push_back(x_meta.dims.at(i));
      }
    }
  } else {
    for (int64_t i = 0; i < x_meta.dims.size(); ++i) {
      if (reduce_all || dims_set.find(i) != dims_set.end()) {
        continue;
      } else {
        out_dim_vector.push_back(x_meta.dims.at(i));
      }
    }

    if (out_dim_vector.size() == 0) {
      out_dim_vector.push_back(1);
    }
  }
280
  DDim out_dim = pten::framework::make_ddim(out_dim_vector);
281

282 283 284 285 286 287 288 289 290 291
  DataType out_dtype;
  if (dtype != DataType::UNDEFINED) {
    out_dtype = dtype;
  } else {
    if (x_meta.dtype == DataType::BOOL || x_meta.dtype == DataType::INT32 ||
        x_meta.dtype == DataType::INT64) {
      out_dtype = DataType::INT64;
    } else {
      out_dtype = x_meta.dtype;
    }
292 293 294 295 296 297
  }

  DenseTensorMeta return_meta(out_dtype, out_dim, x_meta.layout);
  return return_meta;
}

298
}  // namespace pten