kernel_signature.h 4.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "paddle/fluid/platform/device_context.h"
#include "paddle/pten/common/scalar.h"
#include "paddle/pten/common/scalar_array.h"
#include "paddle/pten/core/dense_tensor.h"

// This header is used to cast kernel function from void* to original form of
// function Currnetly.
// It may be generated automatically in the future.

namespace pten {

using DeviceContext = paddle::platform::DeviceContext;

using add_kernel = void (*)(const DeviceContext&,
                            const DenseTensor&,
                            const DenseTensor&,
                            DenseTensor*);

35 36 37 38
using cast_kernel = void (*)(const DeviceContext&,
                             const DenseTensor&,
                             DataType,
                             DenseTensor*);
39

40 41 42 43 44
using concat_kernel = void (*)(const DeviceContext&,
                               const std::vector<DenseTensor>&,
                               const Scalar&,
                               DenseTensor*);

45 46 47 48 49 50 51 52 53 54 55 56 57
using divide_kernel = void (*)(const DeviceContext&,
                               const DenseTensor&,
                               const DenseTensor&,
                               DenseTensor*);

using dot_kernel = void (*)(const DeviceContext&,
                            const DenseTensor&,
                            const DenseTensor&,
                            DenseTensor*);

using flatten_kernel =
    void (*)(const DeviceContext&, const DenseTensor&, int, int, DenseTensor*);

58 59 60 61 62
using empty_kernel = void (*)(const DeviceContext&,
                              const ScalarArray&,
                              DenseTensor*);

using empty_like_kernel = void (*)(const DeviceContext&, DenseTensor*);
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
using full_kernel = void (*)(const DeviceContext&,
                             const ScalarArray&,
                             const Scalar&,
                             DenseTensor*);

using full_like_kernel = void (*)(const DeviceContext&,
                                  const Scalar&,
                                  DenseTensor*);

using matmul_kernel = void (*)(const DeviceContext&,
                               const DenseTensor&,
                               const DenseTensor&,
                               bool,
                               bool,
                               DenseTensor*);

using mean_kernel = void (*)(const DeviceContext&,
                             const DenseTensor&,
                             const std::vector<int64_t>&,
                             bool,
                             DenseTensor*);

using multiply_kernel = void (*)(const DeviceContext&,
                                 const DenseTensor&,
                                 const DenseTensor&,
                                 DenseTensor*);

using reshape_kernel = void (*)(const DeviceContext&,
                                const DenseTensor&,
92
                                const ScalarArray&,
93 94 95 96 97 98 99 100 101 102 103 104 105
                                DenseTensor*);

using scale_kernel = void (*)(const DeviceContext&,
                              const DenseTensor&,
                              const Scalar&,
                              float,
                              bool,
                              DenseTensor*);

using sum_kernel = void (*)(const DeviceContext&,
                            const DenseTensor&,
                            const std::vector<int64_t>&,
                            DataType,
106
                            bool,
107 108 109 110 111 112 113
                            DenseTensor*);

using subtract_kernel = void (*)(const DeviceContext&,
                                 const DenseTensor&,
                                 const DenseTensor&,
                                 DenseTensor*);

C
chentianyu03 已提交
114 115 116 117
using conj_kernel = void (*)(const DeviceContext&,
                             const DenseTensor&,
                             DenseTensor*);

118 119 120 121 122 123 124 125 126 127
/* -------------- Grad Kernel ----------------- */
using matmul_grad_kernel = void (*)(const DeviceContext&,
                                    const DenseTensor&,
                                    const DenseTensor&,
                                    const DenseTensor&,
                                    bool,
                                    bool,
                                    DenseTensor*,
                                    DenseTensor*);

128
}  // namespace pten