tensor.py 15.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
from ..layer_helper import LayerHelper
16
from ..param_attr import ParamAttr
X
xuwei06 已提交
17 18
from ..framework import convert_np_dtype_to_dtype_
from ..framework import Variable
19
from ..initializer import Constant, force_init_on_cpu
20
from ..core import VarDesc
Y
yuyang18 已提交
21
from layer_function_generator import templatedoc
X
xuwei06 已提交
22
import numpy
Y
Yu Yang 已提交
23 24

__all__ = [
25 26
    'create_tensor',
    'create_parameter',
Q
Qiao Longfei 已提交
27
    'create_global_var',
28 29 30 31 32 33
    'cast',
    'concat',
    'sums',
    'assign',
    'fill_constant_batch_size_like',
    'fill_constant',
S
sneaxiy 已提交
34 35
    'argmin',
    'argmax',
36 37
    'ones',
    'zeros',
Y
Yu Yang 已提交
38 39 40
]


X
xuwei06 已提交
41
def create_tensor(dtype, name=None, persistable=False):
42
    """
Q
qiaolongfei 已提交
43
    **Create a Tensor**
44 45 46 47

    Args:
        dtype (string): 'float32'|'int32'|..., the data type of the
            created tensor.
Q
qiaolongfei 已提交
48
        name (string, Default: None): The name of the created tensor, if not set,
49
            the name will be a random unique one.
Q
qiaolongfei 已提交
50
        persistable (bool, Default: False): Set the persistable flag of the create tensor.
51 52 53 54 55 56 57 58 59

    Returns:
        Variable: The tensor variable storing the created tensor.

    Examples:
        .. code-block:: python

          tensor = fluid.layers.create_tensor(dtype='float32')
    """
Y
Yu Yang 已提交
60
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
61 62
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
63 64


65 66
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
67
                     name=None,
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
    Create a parameter
    Args:
        shape(list[int]): shape of the parameter
        dtype(string): element type of the parameter
        attr(ParamAttr): attributes of the parameter
        is_bias(bool): This can affect which default initializer is chosen
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
        default_initializer(Initializer): initializer for the parameter

    Returns:
        Parameter: the created parameter
    """
Q
Qiao Longfei 已提交
86
    helper = LayerHelper("create_parameter", **locals())
87
    if attr is None:
X
xuwei06 已提交
88
        attr = ParamAttr(name=name)
89 90 91 92
    return helper.create_parameter(attr, shape, dtype, is_bias,
                                   default_initializer)


93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
    Create a global variable. such as global_step
    Args:
        shape(list[int]): shape of the variable
        value(float): the value of the variable
        dtype(string): element type of the parameter
        persistable(bool): if this variable is persistable
        force_cpu(bool): force this variable to be on CPU

    Returns:
        Variable: the created Variable
    """
Q
Qiao Longfei 已提交
111 112 113 114
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
        dtype=dtype, shape=shape, persistable=persistable, name=name)
    helper.set_variable_initializer(
115 116
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
Q
Qiao Longfei 已提交
117 118 119
    return var


120
def cast(x, dtype):
Y
Yu Yang 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
    """
    This function takes in the input with input_dtype
    and casts it to the output_dtype as the output.
    """
    helper = LayerHelper('cast', **locals())
    out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


136
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
137
    """
138 139 140
    **Concat**

    This function concatenates the input along the axis mentioned
Y
Yu Yang 已提交
141
    and returns that as the output.
142 143 144 145

    Args:
        input(list): List of tensors to be concatenated
        axis(int): Integer axis along which the tensors will be concatenated
146 147
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
148 149 150 151 152 153 154

    Returns:
        Variable: Output variable of the concatenation

    Examples:
        .. code-block:: python
          out = fluid.layers.concat(input=[Efirst, Esecond, Ethird, Efourth])
Y
Yu Yang 已提交
155 156 157 158 159 160 161 162 163 164 165
    """
    helper = LayerHelper('concat', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='concat',
        inputs={'X': input},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


166
def sums(input, out=None):
K
kavyasrinet 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
    """This function performs the sum operation on the input and returns the
    result as the output.

    Args:
        input (Variable|list): The input tensor that has the elements
                               that need to be summed up.

    Returns:
        Variable: The tensor type variable that has the sum of input
                  written to it.

    Examples:
        .. code-block::python

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          a0 = layers.array_read(array=tmp, i=i)
          i = layers.increment(x=i)
          a1 = layers.array_read(array=tmp, i=i)
Y
Yu Yang 已提交
186 187
          mean_a0 = layers.mean(a0)
          mean_a1 = layers.mean(a1)
K
kavyasrinet 已提交
188
          a_sum = layers.sums(input=[mean_a0, mean_a1])
Y
Yu Yang 已提交
189 190 191 192 193 194 195 196
    """
    helper = LayerHelper('sum', **locals())
    if out is None:
        out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(type='sum', inputs={'X': input}, outputs={'Out': out})
    return out


197
def assign(input, output):
198 199 200 201 202 203
    """
    **Assign**

    This function copies the *input* Variable to the *output* Variable.

    Args:
X
xuwei06 已提交
204
        input(Variable|numpy.ndarray): The source variable
205 206 207 208 209 210 211 212 213 214 215
        output(Variable): The destination variable

    Returns:
        Variable: The destination variable that was supplied as the *output*.

    Examples:
        .. code-block:: python
          out = fluid.layers.create_tensor(dtype='float32')
          hidden = fluid.layers.fc(input=data, size=10)
          fluid.layers.assign(hidden, out)
    """
Y
Yu Yang 已提交
216
    helper = LayerHelper('assign', **locals())
X
xuwei06 已提交
217 218
    if isinstance(input, Variable):
        helper.append_op(
R
robot 已提交
219
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
220 221
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
222
        if dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
223
            value_name = "fp32_values"
224
            values = [float(v) for v in input.flat]
225
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
226
            value_name = "int32_values"
227
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
228 229
        else:
            raise ValueError("Unsupported dtype %s", input.dtype)
230 231 232
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
X
xuwei06 已提交
233 234 235 236 237 238 239

        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
240
                value_name: values
X
xuwei06 已提交
241 242 243 244
            })
    else:
        raise ValueError("Wrong type for assign input: %s" % type(input))

Y
Yu Yang 已提交
245 246 247
    return output


Q
QI JUN 已提交
248
def fill_constant(shape, dtype, value, force_cpu=False, out=None):
Y
Yu Yang 已提交
249
    """
250 251
    **fill_constant**

252 253
    This function creates a tensor with specified `shape` and `dtype`, and
    initializes it with a constant specifed by `value`.
K
kavyasrinet 已提交
254

255
    The attribute `stop_gradient` of the created tensor is set to True.
256 257

    Args:
258
        shape(tuple|list|None): Shape of the output tensor.
259
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output tensor.
260 261
        value(float): The constant value used to initialize the output tensor.
        out(Variable): The output tensor.
262
        force_cpu(True|False): data should be on CPU if set true.
263 264

    Returns:
265
        Variable: The tensor variable storing the output.
266 267 268 269 270

    Examples:
        .. code-block:: python

          data = fluid.layers.fill_constant(shape=[1], value=0, dtype='int64')
Y
Yu Yang 已提交
271
    """
272

Y
Yu Yang 已提交
273 274 275 276 277 278 279
    helper = LayerHelper("fill_constant", **locals())
    if out is None:
        out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='fill_constant',
        inputs={},
        outputs={'Out': [out]},
Q
QI JUN 已提交
280 281 282 283
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
284
            'force_cpu': force_cpu or force_init_on_cpu()
Q
QI JUN 已提交
285
        })
Y
Yu Yang 已提交
286 287 288 289
    out.stop_gradient = True
    return out


Y
yuyang18 已提交
290
@templatedoc()
Y
Yu Yang 已提交
291 292 293 294 295
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
296
                                  output_dim_idx=0):
297
    """
Y
yuyang18 已提交
298
    ${comment}
299 300 301

    It also sets *stop_gradient* to True.

Y
yuyang18 已提交
302 303 304
    >>> data = fluid.layers.fill_constant_batch_size_like(
    >>>             input=like, shape=[1], value=0, dtype='int64')

305
    Args:
Y
yuyang18 已提交
306
        input(${input_type}): ${input_comment}.
307

Y
yuyang18 已提交
308
        shape(${shape_type}): ${shape_comment}.
309

Y
yuyang18 已提交
310 311 312
        dtype(${dtype_type}): ${dtype_comment}.

        value(${value_type}): ${value_comment}.
313

Y
yuyang18 已提交
314 315 316 317 318
        input_dim_idx(${input_dim_idx_type}): ${input_dim_idx_comment}.

        output_dim_idx(${output_dim_idx_type}): ${output_dim_idx_comment}.

    Returns:
Y
yuyang18 已提交
319
        ${out_comment}.
320
    """
Y
Yu Yang 已提交
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
    out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx
        })
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
def argmin(x, axis=0):
    """
    **argmin**

    This function computes the indices of the min elements 
    of the input tensor's element along the provided axis.

    Args:
        x(Variable): The input to compute the indices of
                     the min elements.
        axis(int): Axis to compute indices along.
    
    Returns:
        Variable: The tensor variable storing the output
    
    Examples:
        .. code-block:: python
          
          out = fluid.layers.argmin(x=in, axis=0)
          out = fluid.layers.argmin(x=in, axis=-1)  
    """
    helper = LayerHelper("arg_min", **locals())
    out = helper.create_tmp_variable(VarDesc.VarType.INT64)
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


def argmax(x, axis=0):
    """
    **argmax**

    This function computes the indices of the max elements 
    of the input tensor's element along the provided axis.

    Args:
        x(Variable): The input to compute the indices of
                     the max elements.
        axis(int): Axis to compute indices along.
    
    Returns:
        Variable: The tensor variable storing the output
    
    Examples:
        .. code-block:: python
          
          out = fluid.layers.argmax(x=in, axis=0)
          out = fluid.layers.argmax(x=in, axis=-1)  
    """
    helper = LayerHelper("arg_max", **locals())
    out = helper.create_tmp_variable(VarDesc.VarType.INT64)
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


Y
Yang Yu 已提交
400
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
401
    """
402 403 404 405 406 407 408 409 410
    **ones**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 1.

    It also sets *stop_gradient* to True.

    Args:
        shape(tuple|list|None): Shape of output tensor
411
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor
412 413 414 415 416 417 418 419

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

          data = fluid.layers.ones(shape=[1], dtype='int64')
Y
Yu Yang 已提交
420 421 422 423
    """
    return fill_constant(value=1.0, **locals())


Y
Yang Yu 已提交
424
def zeros(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
425
    """
426 427 428 429 430 431 432 433 434
    **zeros**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 0.

    It also sets *stop_gradient* to True.

    Args:
        shape(tuple|list|None): Shape of output tensor
435
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor
436 437 438 439 440 441 442 443

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

          data = fluid.layers.zeros(shape=[1], dtype='int64')
Y
Yu Yang 已提交
444 445
    """
    return fill_constant(value=0.0, **locals())
446 447


F
fengjiayi 已提交
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
def reverse(x, axis):
    """
    **reverse**

    This function reverse the input 'x' along given axises.

    Args:
        x(Vairbale): the input to be reversed.
        axis(int|tuple|list): Axis that along which order of elements 
                    is reversed. If it is a tuple or a list, reversing 
                    will be apply on each axis in the tuple or list.  

    Returns:
        Variable: The reversed tensor.

    Examples:
        .. code-block:: python

          out = fluid.layers.reverse(x=in, axis=0)
          # or:
          out = fluid.layers.reverse(x=in, axis=[0,1])
    """
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='reverse',
        inputs={'Input': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
        overwrite(bool): Whether or not cover the given file when it has already 
            existed. If it's set 'False' and the file is existed, a runtime 
            error will be thrown. 
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
        x(list): A list of Tensor/LoDTensor to be saved together in a single file.
        file_path(str): The file path where variables will be saved.
        overwrite(bool): Whether or not cover the given file when it has already 
            existed. If it's set 'False' and the file is existed, a runtime 
            error will be thrown. 
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
    Loads a list of vairables from a single file.

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})