tensor.py 15.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
from ..layer_helper import LayerHelper
16
from ..param_attr import ParamAttr
X
xuwei06 已提交
17 18
from ..framework import convert_np_dtype_to_dtype_
from ..framework import Variable
19
from ..initializer import Constant, force_init_on_cpu
20
from ..core import VarDesc
Y
yuyang18 已提交
21
from layer_function_generator import templatedoc
X
xuwei06 已提交
22
import numpy
Y
Yu Yang 已提交
23 24

__all__ = [
25 26
    'create_tensor',
    'create_parameter',
Q
Qiao Longfei 已提交
27
    'create_global_var',
28 29 30 31 32 33
    'cast',
    'concat',
    'sums',
    'assign',
    'fill_constant_batch_size_like',
    'fill_constant',
S
sneaxiy 已提交
34 35
    'argmin',
    'argmax',
36 37
    'ones',
    'zeros',
Y
Yu Yang 已提交
38 39 40
]


X
xuwei06 已提交
41
def create_tensor(dtype, name=None, persistable=False):
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
    """
    **Create a Tensor with certain data type and name**

    Args:
        dtype (string): 'float32'|'int32'|..., the data type of the
            created tensor.
        name (string|None): The name of the created tensor, if not set,
            the name will be a random unique one.
        persistable (bool): Set the persistable flag of the create tensor,
            default value is False.

    Returns:
        Variable: The tensor variable storing the created tensor.

    Examples:
        .. code-block:: python

          tensor = fluid.layers.create_tensor(dtype='float32')
    """
Y
Yu Yang 已提交
61
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
62 63
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
64 65


66 67
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
68
                     name=None,
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
    Create a parameter
    Args:
        shape(list[int]): shape of the parameter
        dtype(string): element type of the parameter
        attr(ParamAttr): attributes of the parameter
        is_bias(bool): This can affect which default initializer is chosen
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
        default_initializer(Initializer): initializer for the parameter

    Returns:
        Parameter: the created parameter
    """
Q
Qiao Longfei 已提交
87
    helper = LayerHelper("create_parameter", **locals())
88
    if attr is None:
X
xuwei06 已提交
89
        attr = ParamAttr(name=name)
90 91 92 93
    return helper.create_parameter(attr, shape, dtype, is_bias,
                                   default_initializer)


94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
    Create a global variable. such as global_step
    Args:
        shape(list[int]): shape of the variable
        value(float): the value of the variable
        dtype(string): element type of the parameter
        persistable(bool): if this variable is persistable
        force_cpu(bool): force this variable to be on CPU

    Returns:
        Variable: the created Variable
    """
Q
Qiao Longfei 已提交
112 113 114 115
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
        dtype=dtype, shape=shape, persistable=persistable, name=name)
    helper.set_variable_initializer(
116 117
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
Q
Qiao Longfei 已提交
118 119 120
    return var


121
def cast(x, dtype):
Y
Yu Yang 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
    """
    This function takes in the input with input_dtype
    and casts it to the output_dtype as the output.
    """
    helper = LayerHelper('cast', **locals())
    out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


137
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
138
    """
139 140 141
    **Concat**

    This function concatenates the input along the axis mentioned
Y
Yu Yang 已提交
142
    and returns that as the output.
143 144 145 146

    Args:
        input(list): List of tensors to be concatenated
        axis(int): Integer axis along which the tensors will be concatenated
147 148
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
149 150 151 152 153 154 155

    Returns:
        Variable: Output variable of the concatenation

    Examples:
        .. code-block:: python
          out = fluid.layers.concat(input=[Efirst, Esecond, Ethird, Efourth])
Y
Yu Yang 已提交
156 157 158 159 160 161 162 163 164 165 166
    """
    helper = LayerHelper('concat', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='concat',
        inputs={'X': input},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


167
def sums(input, out=None):
K
kavyasrinet 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
    """This function performs the sum operation on the input and returns the
    result as the output.

    Args:
        input (Variable|list): The input tensor that has the elements
                               that need to be summed up.

    Returns:
        Variable: The tensor type variable that has the sum of input
                  written to it.

    Examples:
        .. code-block::python

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          a0 = layers.array_read(array=tmp, i=i)
          i = layers.increment(x=i)
          a1 = layers.array_read(array=tmp, i=i)
Y
Yu Yang 已提交
187 188
          mean_a0 = layers.mean(a0)
          mean_a1 = layers.mean(a1)
K
kavyasrinet 已提交
189
          a_sum = layers.sums(input=[mean_a0, mean_a1])
Y
Yu Yang 已提交
190 191 192 193 194 195 196 197
    """
    helper = LayerHelper('sum', **locals())
    if out is None:
        out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(type='sum', inputs={'X': input}, outputs={'Out': out})
    return out


198
def assign(input, output):
199 200 201 202 203 204
    """
    **Assign**

    This function copies the *input* Variable to the *output* Variable.

    Args:
X
xuwei06 已提交
205
        input(Variable|numpy.ndarray): The source variable
206 207 208 209 210 211 212 213 214 215 216
        output(Variable): The destination variable

    Returns:
        Variable: The destination variable that was supplied as the *output*.

    Examples:
        .. code-block:: python
          out = fluid.layers.create_tensor(dtype='float32')
          hidden = fluid.layers.fc(input=data, size=10)
          fluid.layers.assign(hidden, out)
    """
Y
Yu Yang 已提交
217
    helper = LayerHelper('assign', **locals())
X
xuwei06 已提交
218 219
    if isinstance(input, Variable):
        helper.append_op(
R
robot 已提交
220
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
221 222
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
223
        if dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
224
            value_name = "fp32_values"
225
            values = [float(v) for v in input.flat]
226
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
227
            value_name = "int32_values"
228
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
229 230
        else:
            raise ValueError("Unsupported dtype %s", input.dtype)
231 232 233
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
X
xuwei06 已提交
234 235 236 237 238 239 240

        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
241
                value_name: values
X
xuwei06 已提交
242 243 244 245
            })
    else:
        raise ValueError("Wrong type for assign input: %s" % type(input))

Y
Yu Yang 已提交
246 247 248
    return output


Q
QI JUN 已提交
249
def fill_constant(shape, dtype, value, force_cpu=False, out=None):
Y
Yu Yang 已提交
250
    """
251 252
    **fill_constant**

253 254
    This function creates a tensor with specified `shape` and `dtype`, and
    initializes it with a constant specifed by `value`.
K
kavyasrinet 已提交
255

256
    The attribute `stop_gradient` of the created tensor is set to True.
257 258

    Args:
259
        shape(tuple|list|None): Shape of the output tensor.
260
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output tensor.
261 262
        value(float): The constant value used to initialize the output tensor.
        out(Variable): The output tensor.
263
        force_cpu(True|False): data should be on CPU if set true.
264 265

    Returns:
266
        Variable: The tensor variable storing the output.
267 268 269 270 271

    Examples:
        .. code-block:: python

          data = fluid.layers.fill_constant(shape=[1], value=0, dtype='int64')
Y
Yu Yang 已提交
272
    """
273

Y
Yu Yang 已提交
274 275 276 277 278 279 280
    helper = LayerHelper("fill_constant", **locals())
    if out is None:
        out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='fill_constant',
        inputs={},
        outputs={'Out': [out]},
Q
QI JUN 已提交
281 282 283 284
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
285
            'force_cpu': force_cpu or force_init_on_cpu()
Q
QI JUN 已提交
286
        })
Y
Yu Yang 已提交
287 288 289 290
    out.stop_gradient = True
    return out


Y
yuyang18 已提交
291
@templatedoc()
Y
Yu Yang 已提交
292 293 294 295 296
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
297
                                  output_dim_idx=0):
298
    """
Y
yuyang18 已提交
299
    ${comment}
300 301 302

    It also sets *stop_gradient* to True.

Y
yuyang18 已提交
303 304 305
    >>> data = fluid.layers.fill_constant_batch_size_like(
    >>>             input=like, shape=[1], value=0, dtype='int64')

306
    Args:
Y
yuyang18 已提交
307
        input(${input_type}): ${input_comment}.
308

Y
yuyang18 已提交
309
        shape(${shape_type}): ${shape_comment}.
310

Y
yuyang18 已提交
311 312 313
        dtype(${dtype_type}): ${dtype_comment}.

        value(${value_type}): ${value_comment}.
314

Y
yuyang18 已提交
315 316 317 318 319
        input_dim_idx(${input_dim_idx_type}): ${input_dim_idx_comment}.

        output_dim_idx(${output_dim_idx_type}): ${output_dim_idx_comment}.

    Returns:
Y
yuyang18 已提交
320
        ${out_comment}.
321
    """
Y
Yu Yang 已提交
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
    out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx
        })
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
def argmin(x, axis=0):
    """
    **argmin**

    This function computes the indices of the min elements 
    of the input tensor's element along the provided axis.

    Args:
        x(Variable): The input to compute the indices of
                     the min elements.
        axis(int): Axis to compute indices along.
    
    Returns:
        Variable: The tensor variable storing the output
    
    Examples:
        .. code-block:: python
          
          out = fluid.layers.argmin(x=in, axis=0)
          out = fluid.layers.argmin(x=in, axis=-1)  
    """
    helper = LayerHelper("arg_min", **locals())
    out = helper.create_tmp_variable(VarDesc.VarType.INT64)
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


def argmax(x, axis=0):
    """
    **argmax**

    This function computes the indices of the max elements 
    of the input tensor's element along the provided axis.

    Args:
        x(Variable): The input to compute the indices of
                     the max elements.
        axis(int): Axis to compute indices along.
    
    Returns:
        Variable: The tensor variable storing the output
    
    Examples:
        .. code-block:: python
          
          out = fluid.layers.argmax(x=in, axis=0)
          out = fluid.layers.argmax(x=in, axis=-1)  
    """
    helper = LayerHelper("arg_max", **locals())
    out = helper.create_tmp_variable(VarDesc.VarType.INT64)
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


Y
Yang Yu 已提交
401
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
402
    """
403 404 405 406 407 408 409 410 411
    **ones**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 1.

    It also sets *stop_gradient* to True.

    Args:
        shape(tuple|list|None): Shape of output tensor
412
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor
413 414 415 416 417 418 419 420

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

          data = fluid.layers.ones(shape=[1], dtype='int64')
Y
Yu Yang 已提交
421 422 423 424
    """
    return fill_constant(value=1.0, **locals())


Y
Yang Yu 已提交
425
def zeros(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
426
    """
427 428 429 430 431 432 433 434 435
    **zeros**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 0.

    It also sets *stop_gradient* to True.

    Args:
        shape(tuple|list|None): Shape of output tensor
436
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor
437 438 439 440 441 442 443 444

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

          data = fluid.layers.zeros(shape=[1], dtype='int64')
Y
Yu Yang 已提交
445 446
    """
    return fill_constant(value=0.0, **locals())
447 448


F
fengjiayi 已提交
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
def reverse(x, axis):
    """
    **reverse**

    This function reverse the input 'x' along given axises.

    Args:
        x(Vairbale): the input to be reversed.
        axis(int|tuple|list): Axis that along which order of elements 
                    is reversed. If it is a tuple or a list, reversing 
                    will be apply on each axis in the tuple or list.  

    Returns:
        Variable: The reversed tensor.

    Examples:
        .. code-block:: python

          out = fluid.layers.reverse(x=in, axis=0)
          # or:
          out = fluid.layers.reverse(x=in, axis=[0,1])
    """
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='reverse',
        inputs={'Input': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
        overwrite(bool): Whether or not cover the given file when it has already 
            existed. If it's set 'False' and the file is existed, a runtime 
            error will be thrown. 
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
        x(list): A list of Tensor/LoDTensor to be saved together in a single file.
        file_path(str): The file path where variables will be saved.
        overwrite(bool): Whether or not cover the given file when it has already 
            existed. If it's set 'False' and the file is existed, a runtime 
            error will be thrown. 
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
    Loads a list of vairables from a single file.

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})