system_allocator.cc 16.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14
#define GLOG_NO_ABBREVIATED_SEVERITIES
15

Y
Yi Wang 已提交
16
#include "paddle/fluid/memory/detail/system_allocator.h"
17

D
dzhwinter 已提交
18 19
#ifdef _WIN32
#include <malloc.h>
20 21 22
#ifndef NOMINMAX
#define NOMINMAX  // msvc max/min macro conflict with std::min/max
#endif
D
dzhwinter 已提交
23 24
#include <windows.h>  // VirtualLock/VirtualUnlock
#else
25
#include <sys/mman.h>  // for mlock and munlock
D
dzhwinter 已提交
26
#endif
27
#include "gflags/gflags.h"
28
#include "paddle/fluid/memory/allocation/allocator.h"
Y
Yi Wang 已提交
29
#include "paddle/fluid/platform/cpu_info.h"
30
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
31
#include "paddle/fluid/platform/device/npu/npu_info.h"
Y
Yi Wang 已提交
32
#include "paddle/fluid/platform/enforce.h"
F
fwenguang 已提交
33 34 35
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif
36

37
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
38 39
#include "paddle/fluid/platform/cuda_device_guard.h"
#endif
40

41 42
#include "paddle/fluid/platform/device/device_wrapper.h"

S
sneaxiy 已提交
43
DECLARE_bool(use_pinned_memory);
44
DECLARE_double(fraction_of_gpu_memory_to_use);
45 46
DECLARE_uint64(initial_gpu_memory_in_mb);
DECLARE_uint64(reallocate_gpu_memory_in_mb);
Z
zhhsplendid 已提交
47

48 49 50 51
namespace paddle {
namespace memory {
namespace detail {

D
dzhwinter 已提交
52
void* AlignedMalloc(size_t size) {
G
gongweibao 已提交
53
  void* p = nullptr;
D
dzhwinter 已提交
54
  size_t alignment = 32ul;
T
tensor-tang 已提交
55
#ifdef PADDLE_WITH_MKLDNN
56
  // refer to https://github.com/01org/mkl-dnn/blob/master/include/dnnl.hpp
57
  // memory alignment
D
dzhwinter 已提交
58 59 60 61
  alignment = 4096ul;
#endif
#ifdef _WIN32
  p = _aligned_malloc(size, alignment);
62
#else
63 64 65 66 67
  int error = posix_memalign(&p, alignment, size);
  PADDLE_ENFORCE_EQ(
      error, 0,
      platform::errors::ResourceExhausted(
          "Fail to alloc memory of %ld size, error code is %d.", size, error));
68
#endif
69 70
  PADDLE_ENFORCE_NOT_NULL(p, platform::errors::ResourceExhausted(
                                 "Fail to alloc memory of %ld size.", size));
D
dzhwinter 已提交
71 72 73 74 75 76 77 78 79 80 81 82
  return p;
}

void* CPUAllocator::Alloc(size_t* index, size_t size) {
  // According to http://www.cplusplus.com/reference/cstdlib/malloc/,
  // malloc might not return nullptr if size is zero, but the returned
  // pointer shall not be dereferenced -- so we make it nullptr.
  if (size <= 0) return nullptr;

  *index = 0;  // unlock memory

  void* p = AlignedMalloc(size);
83 84 85

  if (p != nullptr) {
    if (FLAGS_use_pinned_memory) {
Y
Yi Wang 已提交
86
      *index = 1;
D
dzhwinter 已提交
87 88 89
#ifdef _WIN32
      VirtualLock(p, size);
#else
90
      mlock(p, size);  // lock memory
D
dzhwinter 已提交
91
#endif
92
    }
93
  }
94

95 96 97
  return p;
}

L
liaogang 已提交
98
void CPUAllocator::Free(void* p, size_t size, size_t index) {
99
  if (p != nullptr && index == 1) {
D
dzhwinter 已提交
100 101 102
#ifdef _WIN32
    VirtualUnlock(p, size);
#else
103
    munlock(p, size);
D
dzhwinter 已提交
104
#endif
105
  }
P
peizhilin 已提交
106 107 108
#ifdef _WIN32
  _aligned_free(p);
#else
109
  free(p);
P
peizhilin 已提交
110
#endif
111 112
}

L
liaogang 已提交
113
bool CPUAllocator::UseGpu() const { return false; }
L
liaogang 已提交
114

115
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
116

Y
Yi Wang 已提交
117
void* GPUAllocator::Alloc(size_t* index, size_t size) {
118 119
  // CUDA documentation doesn't explain if cudaMalloc returns nullptr
  // if size is 0.  We just make sure it does.
L
liaogang 已提交
120
  if (size <= 0) return nullptr;
Y
Yu Yang 已提交
121

122
  void* p;
123
  auto result = platform::RecordedGpuMalloc(&p, size, gpu_id_);
Y
Yu Yang 已提交
124

125
  if (result == gpuSuccess) {
Y
Yi Wang 已提交
126
    *index = 0;
127
    gpu_alloc_size_ += size;
L
liaogang 已提交
128
    return p;
129
  } else {
130
    size_t avail, total, actual_avail, actual_total;
131
    bool is_limited = platform::RecordedGpuMemGetInfo(
132
        &avail, &total, &actual_avail, &actual_total, gpu_id_);
133
    size_t allocated = total - avail;
134 135 136 137 138 139 140 141 142 143 144

    std::string err_msg;
    if (is_limited) {
      auto limit_size = (total >> 20);
      err_msg = string::Sprintf(
          "\n   3) Set environment variable `FLAGS_gpu_memory_limit_mb` to a "
          "larger value. Currently `FLAGS_gpu_memory_limit_mb` is %d, so the "
          "maximum GPU memory usage is limited to %d MB.\n"
          "      The command is `export FLAGS_gpu_memory_limit_mb=xxx`.",
          limit_size, limit_size);
    }
145

146
    PADDLE_THROW_BAD_ALLOC(platform::errors::ResourceExhausted(
147
        "\n\nOut of memory error on GPU %d. "
148
        "Cannot allocate %s memory on GPU %d, %s memory has been allocated and "
149 150 151 152 153 154 155 156
        "available memory is only %s.\n\n"
        "Please check whether there is any other process using GPU %d.\n"
        "1. If yes, please stop them, or start PaddlePaddle on another GPU.\n"
        "2. If no, please try one of the following suggestions:\n"
        "   1) Decrease the batch size of your model.\n"
        "   2) FLAGS_fraction_of_gpu_memory_to_use is %.2lf now, "
        "please set it to a higher value but less than 1.0.\n"
        "      The command is "
157
        "`export FLAGS_fraction_of_gpu_memory_to_use=xxx`.%s\n\n",
158
        gpu_id_, string::HumanReadableSize(size), gpu_id_,
159 160
        string::HumanReadableSize(allocated), string::HumanReadableSize(avail),
        gpu_id_, FLAGS_fraction_of_gpu_memory_to_use, err_msg));
L
liaogang 已提交
161
  }
162 163
}

L
liaogang 已提交
164
void GPUAllocator::Free(void* p, size_t size, size_t index) {
165 166 167 168 169 170 171
  PADDLE_ENFORCE_EQ(index, 0, platform::errors::InvalidArgument(
                                  "The index should be 0, index is %d", index));
  PADDLE_ENFORCE_GE(gpu_alloc_size_, size,
                    platform::errors::InvalidArgument(
                        "The size of memory (%d) to free exceeds the size of "
                        "allocated gpu memory (%d)",
                        size, gpu_alloc_size_));
172
  gpu_alloc_size_ -= size;
173

174
  platform::RecordedGpuFree(p, size, gpu_id_);
175 176
}

L
liaogang 已提交
177
bool GPUAllocator::UseGpu() const { return true; }
L
liaogang 已提交
178

C
chengduoZH 已提交
179 180
// PINNED memory allows direct DMA transfers by the GPU to and from system
// memory. It’s locked to a physical address.
Y
Yi Wang 已提交
181
void* CUDAPinnedAllocator::Alloc(size_t* index, size_t size) {
C
chengduoZH 已提交
182
  if (size <= 0) return nullptr;
C
chengduoZH 已提交
183

184
  // NOTE: here, we use CUDAPinnedMaxAllocSize as the maximum memory size
C
chengduoZH 已提交
185
  // of host pinned allocation. Allocates too much would reduce
C
chengduoZH 已提交
186
  // the amount of memory available to the underlying system for paging.
C
chengduoZH 已提交
187
  size_t usable =
188
      paddle::platform::CUDAPinnedMaxAllocSize() - cuda_pinnd_alloc_size_;
C
chengduoZH 已提交
189

C
chengduoZH 已提交
190 191 192 193 194 195
  if (size > usable) {
    LOG(WARNING) << "Cannot malloc " << size / 1024.0 / 1024.0
                 << " MB pinned memory."
                 << ", available " << usable / 1024.0 / 1024.0 << " MB";
    return nullptr;
  }
C
chengduoZH 已提交
196

C
chengduoZH 已提交
197
  void* p;
198 199
// PINNED memory is visible to all CUDA contexts.
#ifdef PADDLE_WITH_HIP
200
  hipError_t result = hipHostMalloc(&p, size, hipHostMallocPortable);
201
#else
D
Dun Liang 已提交
202
  cudaError_t result = cudaHostAlloc(&p, size, cudaHostAllocPortable);
203
#endif
C
chengduoZH 已提交
204

205
  if (result == gpuSuccess) {
Y
Yi Wang 已提交
206
    *index = 1;  // PINNED memory
C
chengduoZH 已提交
207
    cuda_pinnd_alloc_size_ += size;
C
chengduoZH 已提交
208
    return p;
C
chengduoZH 已提交
209
  } else {
D
Dun Liang 已提交
210
    LOG(WARNING) << "cudaHostAlloc failed.";
C
chengduoZH 已提交
211
    return nullptr;
C
chengduoZH 已提交
212 213 214 215 216 217
  }

  return nullptr;
}

void CUDAPinnedAllocator::Free(void* p, size_t size, size_t index) {
218
  gpuError_t err;
219 220 221 222 223 224 225 226
  PADDLE_ENFORCE_EQ(index, 1, platform::errors::InvalidArgument(
                                  "The index should be 1, but got %d", index));

  PADDLE_ENFORCE_GE(cuda_pinnd_alloc_size_, size,
                    platform::errors::InvalidArgument(
                        "The size of memory (%d) to free exceeds the size of "
                        "allocated cuda pinned memory (%d)",
                        size, cuda_pinnd_alloc_size_));
C
chengduoZH 已提交
227
  cuda_pinnd_alloc_size_ -= size;
228 229 230 231 232 233 234 235 236
#ifdef PADDLE_WITH_HIP
  err = hipHostFree(p);
  if (err != hipErrorDeinitialized) {
    PADDLE_ENFORCE_EQ(
        err, hipSuccess,
        platform::errors::Fatal(
            "hipFreeHost failed in GPUPinnedAllocator, error code is %d", err));
  }
#else
C
chengduoZH 已提交
237 238 239
  err = cudaFreeHost(p);

  // Purposefully allow cudaErrorCudartUnloading, because
C
chengduoZH 已提交
240
  // that is returned if you ever call cudaFreeHost after the
C
chengduoZH 已提交
241 242
  // driver has already shutdown. This happens only if the
  // process is terminating, in which case we don't care if
C
chengduoZH 已提交
243
  // cudaFreeHost succeeds.
C
chengduoZH 已提交
244
  if (err != cudaErrorCudartUnloading) {
245 246 247 248 249
    PADDLE_ENFORCE_EQ(
        err, 0,
        platform::errors::Fatal(
            "cudaFreeHost failed in GPUPinnedAllocator, error code is %d",
            err));
C
chengduoZH 已提交
250
  }
251
#endif
C
chengduoZH 已提交
252 253
}

C
chengduoZH 已提交
254
bool CUDAPinnedAllocator::UseGpu() const { return false; }
C
chengduoZH 已提交
255

L
Luo Tao 已提交
256
#endif
257

258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
#ifdef PADDLE_WITH_ASCEND_CL
void* NPUAllocator::Alloc(size_t* index, size_t size) {
  if (size <= 0) return nullptr;

  void* p;
  auto result = platform::RecordedNPUMalloc(&p, size, npu_id_);

  if (result == ACL_ERROR_NONE) {
    *index = 0;
    npu_alloc_size_ += size;
    return p;
  } else {
    size_t avail, total, actual_avail, actual_total;
    bool is_limited = platform::RecordedNPUMemGetInfo(
        &avail, &total, &actual_avail, &actual_total, npu_id_);

    std::string err_msg;
    if (is_limited) {
      auto limit_size = (total >> 20);
      err_msg = string::Sprintf(
          "\n   3) Set environment variable `FLAGS_gpu_memory_limit_mb` to a "
          "larger value. Currently `FLAGS_gpu_memory_limit_mb` is %d, so the "
          "maximum GPU memory usage is limited to %d MB.\n"
          "      The command is `export FLAGS_gpu_memory_limit_mb=xxx`.",
          limit_size, limit_size);
    }

    PADDLE_THROW_BAD_ALLOC(platform::errors::ResourceExhausted(
        "\n\nOut of memory error on NPU %d. "
        "Cannot allocate %s memory on NPU %d, "
        "available memory is only %s.\n\n"
        "Please check whether there is any other process using NPU %d.\n"
        "1. If yes, please stop them, or start PaddlePaddle on another NPU.\n"
        "2. If no, please try one of the following suggestions:\n"
        "   1) Decrease the batch size of your model.\n"
        "   2) FLAGS_fraction_of_gpu_memory_to_use is %.2lf now, "
        "please set it to a higher value but less than 1.0.\n"
        "      The command is "
        "`export FLAGS_fraction_of_gpu_memory_to_use=xxx`.%s\n\n",
        npu_id_, string::HumanReadableSize(size), npu_id_,
        string::HumanReadableSize(avail), npu_id_,
        FLAGS_fraction_of_gpu_memory_to_use, err_msg));
  }
}

void NPUAllocator::Free(void* p, size_t size, size_t index) {
  VLOG(4) << "Free " << p << " size " << size;
  PADDLE_ENFORCE_EQ(index, 0, platform::errors::InvalidArgument(
                                  "The index should be 0, index is %d", index));
  PADDLE_ENFORCE_GE(npu_alloc_size_, size,
                    platform::errors::InvalidArgument(
                        "The size of memory (%d) to free exceeds the size of "
                        "allocated gpu memory (%d)",
                        size, npu_alloc_size_));
  npu_alloc_size_ -= size;

  platform::RecordedNPUFree(p, size, npu_id_);
}

bool NPUAllocator::UseGpu() const { return true; }
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333

void* NPUPinnedAllocator::Alloc(size_t* index, size_t size) {
  if (size <= 0) return nullptr;

  size_t usable =
      paddle::platform::NPUPinnedMaxAllocSize() - npu_pinnd_alloc_size_;

  if (size > usable) {
    LOG(WARNING) << "Cannot malloc " << size / 1024.0 / 1024.0
                 << " MB pinned memory."
                 << ", available " << usable / 1024.0 / 1024.0 << " MB";
    return nullptr;
  }

  void* p;
  // PINNED memory is visible to all NPU contexts.
334
  auto result = platform::NPUHostMalloc(&p, size);
335 336 337 338 339 340

  if (result == ACL_ERROR_NONE) {
    *index = 1;  // PINNED memory
    npu_pinnd_alloc_size_ += size;
    return p;
  } else {
341
    LOG(WARNING) << "NPUHostMalloc failed.";
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
    return nullptr;
  }

  return nullptr;
}

void NPUPinnedAllocator::Free(void* p, size_t size, size_t index) {
  aclError err;
  PADDLE_ENFORCE_EQ(index, 1, platform::errors::InvalidArgument(
                                  "The index should be 1, but got %d", index));

  PADDLE_ENFORCE_GE(npu_pinnd_alloc_size_, size,
                    platform::errors::InvalidArgument(
                        "The size of memory (%d) to free exceeds the size of "
                        "allocated npu pinned memory (%d)",
                        size, npu_pinnd_alloc_size_));
  npu_pinnd_alloc_size_ -= size;
359
  err = platform::NPUHostFree(p);
360 361 362 363 364

  if (err != ACL_ERROR_NONE) {
    PADDLE_ENFORCE_EQ(
        err, 0,
        platform::errors::Fatal(
365
            "NPUHostFree failed in NPUPinnedAllocator, error code is %d", err));
366 367 368 369 370
  }
}

bool NPUPinnedAllocator::UseGpu() const { return false; }

371 372
#endif

F
fwenguang 已提交
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
#ifdef PADDLE_WITH_MLU
void* MLUAllocator::Alloc(size_t* index, size_t size) {
  if (size <= 0) return nullptr;

  void* p;
  auto result = platform::RecordedMLUMalloc(&p, size, mlu_id_);

  if (result == cnrtSuccess) {
    *index = 0;
    mlu_alloc_size_ += size;
    return p;
  } else {
    size_t avail, total, actual_avail, actual_total;
    bool is_limited = platform::RecordedMLUMemGetInfo(
        &avail, &total, &actual_avail, &actual_total, mlu_id_);
    size_t allocated = total - avail;

    std::string err_msg;
    if (is_limited) {
      auto limit_size = (total >> 20);
      err_msg = string::Sprintf(
          "\n   3) Set environment variable `FLAGS_gpu_memory_limit_mb` to a "
          "larger value. Currently `FLAGS_gpu_memory_limit_mb` is %d, so the "
          "maximum MLU memory usage is limited to %d MB.\n"
          "      The command is `export FLAGS_gpu_memory_limit_mb=xxx`.",
          limit_size, limit_size);
    }

    PADDLE_THROW_BAD_ALLOC(platform::errors::ResourceExhausted(
        "\n\nOut of memory error on MLU %d. "
        "Cannot allocate %s memory on MLU %d, %s memory has been allocated and "
        "available memory is only %s.\n\n"
        "Please check whether there is any other process using MLU %d.\n"
        "1. If yes, please stop them, or start PaddlePaddle on another MLU.\n"
        "2. If no, please try one of the following suggestions:\n"
        "   1) Decrease the batch size of your model.\n"
        "   2) FLAGS_fraction_of_gpu_memory_to_use is %.2lf now, "
        "please set it to a higher value but less than 1.0.\n"
        "      The command is "
        "`export FLAGS_fraction_of_gpu_memory_to_use=xxx`.%s\n\n",
        mlu_id_, string::HumanReadableSize(size), mlu_id_,
        string::HumanReadableSize(allocated), string::HumanReadableSize(avail),
        mlu_id_, FLAGS_fraction_of_gpu_memory_to_use, err_msg));
  }
}

void MLUAllocator::Free(void* p, size_t size, size_t index) {
  PADDLE_ENFORCE_EQ(index, 0, platform::errors::InvalidArgument(
                                  "The index should be 0, index is %d", index));
  PADDLE_ENFORCE_GE(mlu_alloc_size_, size,
                    platform::errors::InvalidArgument(
                        "The size of memory (%d) to free exceeds the size of "
                        "allocated gpu memory (%d)",
                        size, mlu_alloc_size_));
  mlu_alloc_size_ -= size;

  platform::RecordedMLUFree(p, size, mlu_id_);
}

bool MLUAllocator::UseGpu() const { return true; }
#endif

435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
#ifdef PADDLE_WITH_CUSTOM_DEVICE
void* CustomAllocator::Alloc(size_t* index, size_t size) {
  if (size <= 0) return nullptr;

  void* p;
  auto place = platform::CustomPlace(dev_type_, dev_id_);
  auto device = platform::DeviceManager::GetDeviceWithPlace(place);
  p = device->MemoryAllocate(size);
  if (LIKELY(p)) {
    VLOG(4) << "CustomAllocator::Alloc " << p << " size " << size;
    *index = 0;
    plug_alloc_size += size;
  } else {
    size_t avail, total;

    platform::DeviceManager::MemoryStats(place, &total, &avail);
    PADDLE_THROW_BAD_ALLOC(platform::errors::ResourceExhausted(
        "\n\nOut of memory error on %s %d. "
        "total memory is %s, used memory is %s, "
        "available memory is only %s.\n\n",
        dev_type_, dev_id_, string::HumanReadableSize(total),
        string::HumanReadableSize(total - avail),
        string::HumanReadableSize(avail)));
  }
  return p;
}

void CustomAllocator::Free(void* p, size_t size, size_t index) {
  VLOG(4) << "CustomAllocator::Free " << p << " size " << size;
  PADDLE_ENFORCE_EQ(index, 0, platform::errors::InvalidArgument(
                                  "The index should be 0, index is %d", index));
  PADDLE_ENFORCE_GE(plug_alloc_size, size,
                    platform::errors::InvalidArgument(
                        "The size of memory (%d) to free exceeds the size of "
                        "allocated gpu memory (%d)",
                        size, plug_alloc_size));
  plug_alloc_size -= size;
  auto place = platform::CustomPlace(dev_type_, dev_id_);
  auto device = platform::DeviceManager::GetDeviceWithPlace(place);
  device->MemoryDeallocate(p, size);
}

bool CustomAllocator::UseGpu() const { return true; }
#endif

480 481 482
}  // namespace detail
}  // namespace memory
}  // namespace paddle