system_allocator.cc 14.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14
#define GLOG_NO_ABBREVIATED_SEVERITIES
15

Y
Yi Wang 已提交
16
#include "paddle/fluid/memory/detail/system_allocator.h"
17

D
dzhwinter 已提交
18 19
#ifdef _WIN32
#include <malloc.h>
20 21 22
#ifndef NOMINMAX
#define NOMINMAX  // msvc max/min macro conflict with std::min/max
#endif
D
dzhwinter 已提交
23 24
#include <windows.h>  // VirtualLock/VirtualUnlock
#else
25
#include <sys/mman.h>  // for mlock and munlock
D
dzhwinter 已提交
26
#endif
27
#include "gflags/gflags.h"
28
#include "paddle/fluid/memory/allocation/allocator.h"
Y
Yi Wang 已提交
29
#include "paddle/fluid/platform/cpu_info.h"
30
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
31
#include "paddle/fluid/platform/device/npu/npu_info.h"
Y
Yi Wang 已提交
32
#include "paddle/fluid/platform/enforce.h"
F
fwenguang 已提交
33 34 35
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif
36

37
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
38 39
#include "paddle/fluid/platform/cuda_device_guard.h"
#endif
40

S
sneaxiy 已提交
41
DECLARE_bool(use_pinned_memory);
42
DECLARE_double(fraction_of_gpu_memory_to_use);
43 44
DECLARE_uint64(initial_gpu_memory_in_mb);
DECLARE_uint64(reallocate_gpu_memory_in_mb);
Z
zhhsplendid 已提交
45

46 47 48 49
namespace paddle {
namespace memory {
namespace detail {

D
dzhwinter 已提交
50
void* AlignedMalloc(size_t size) {
G
gongweibao 已提交
51
  void* p = nullptr;
D
dzhwinter 已提交
52
  size_t alignment = 32ul;
T
tensor-tang 已提交
53
#ifdef PADDLE_WITH_MKLDNN
54
  // refer to https://github.com/01org/mkl-dnn/blob/master/include/dnnl.hpp
55
  // memory alignment
D
dzhwinter 已提交
56 57 58 59
  alignment = 4096ul;
#endif
#ifdef _WIN32
  p = _aligned_malloc(size, alignment);
60
#else
61 62 63 64 65
  int error = posix_memalign(&p, alignment, size);
  PADDLE_ENFORCE_EQ(
      error, 0,
      platform::errors::ResourceExhausted(
          "Fail to alloc memory of %ld size, error code is %d.", size, error));
66
#endif
67 68
  PADDLE_ENFORCE_NOT_NULL(p, platform::errors::ResourceExhausted(
                                 "Fail to alloc memory of %ld size.", size));
D
dzhwinter 已提交
69 70 71 72 73 74 75 76 77 78 79 80
  return p;
}

void* CPUAllocator::Alloc(size_t* index, size_t size) {
  // According to http://www.cplusplus.com/reference/cstdlib/malloc/,
  // malloc might not return nullptr if size is zero, but the returned
  // pointer shall not be dereferenced -- so we make it nullptr.
  if (size <= 0) return nullptr;

  *index = 0;  // unlock memory

  void* p = AlignedMalloc(size);
81 82 83

  if (p != nullptr) {
    if (FLAGS_use_pinned_memory) {
Y
Yi Wang 已提交
84
      *index = 1;
D
dzhwinter 已提交
85 86 87
#ifdef _WIN32
      VirtualLock(p, size);
#else
88
      mlock(p, size);  // lock memory
D
dzhwinter 已提交
89
#endif
90
    }
91
  }
92

93 94 95
  return p;
}

L
liaogang 已提交
96
void CPUAllocator::Free(void* p, size_t size, size_t index) {
97
  if (p != nullptr && index == 1) {
D
dzhwinter 已提交
98 99 100
#ifdef _WIN32
    VirtualUnlock(p, size);
#else
101
    munlock(p, size);
D
dzhwinter 已提交
102
#endif
103
  }
P
peizhilin 已提交
104 105 106
#ifdef _WIN32
  _aligned_free(p);
#else
107
  free(p);
P
peizhilin 已提交
108
#endif
109 110
}

L
liaogang 已提交
111
bool CPUAllocator::UseGpu() const { return false; }
L
liaogang 已提交
112

113
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
114

Y
Yi Wang 已提交
115
void* GPUAllocator::Alloc(size_t* index, size_t size) {
116 117
  // CUDA documentation doesn't explain if cudaMalloc returns nullptr
  // if size is 0.  We just make sure it does.
L
liaogang 已提交
118
  if (size <= 0) return nullptr;
Y
Yu Yang 已提交
119

120
  void* p;
121
  auto result = platform::RecordedGpuMalloc(&p, size, gpu_id_);
Y
Yu Yang 已提交
122

123
  if (result == gpuSuccess) {
Y
Yi Wang 已提交
124
    *index = 0;
125
    gpu_alloc_size_ += size;
L
liaogang 已提交
126
    return p;
127
  } else {
128
    size_t avail, total, actual_avail, actual_total;
129
    bool is_limited = platform::RecordedGpuMemGetInfo(
130
        &avail, &total, &actual_avail, &actual_total, gpu_id_);
131
    size_t allocated = total - avail;
132 133 134 135 136 137 138 139 140 141 142

    std::string err_msg;
    if (is_limited) {
      auto limit_size = (total >> 20);
      err_msg = string::Sprintf(
          "\n   3) Set environment variable `FLAGS_gpu_memory_limit_mb` to a "
          "larger value. Currently `FLAGS_gpu_memory_limit_mb` is %d, so the "
          "maximum GPU memory usage is limited to %d MB.\n"
          "      The command is `export FLAGS_gpu_memory_limit_mb=xxx`.",
          limit_size, limit_size);
    }
143

144
    PADDLE_THROW_BAD_ALLOC(platform::errors::ResourceExhausted(
145
        "\n\nOut of memory error on GPU %d. "
146
        "Cannot allocate %s memory on GPU %d, %s memory has been allocated and "
147 148 149 150 151 152 153 154
        "available memory is only %s.\n\n"
        "Please check whether there is any other process using GPU %d.\n"
        "1. If yes, please stop them, or start PaddlePaddle on another GPU.\n"
        "2. If no, please try one of the following suggestions:\n"
        "   1) Decrease the batch size of your model.\n"
        "   2) FLAGS_fraction_of_gpu_memory_to_use is %.2lf now, "
        "please set it to a higher value but less than 1.0.\n"
        "      The command is "
155
        "`export FLAGS_fraction_of_gpu_memory_to_use=xxx`.%s\n\n",
156
        gpu_id_, string::HumanReadableSize(size), gpu_id_,
157 158
        string::HumanReadableSize(allocated), string::HumanReadableSize(avail),
        gpu_id_, FLAGS_fraction_of_gpu_memory_to_use, err_msg));
L
liaogang 已提交
159
  }
160 161
}

L
liaogang 已提交
162
void GPUAllocator::Free(void* p, size_t size, size_t index) {
163 164 165 166 167 168 169
  PADDLE_ENFORCE_EQ(index, 0, platform::errors::InvalidArgument(
                                  "The index should be 0, index is %d", index));
  PADDLE_ENFORCE_GE(gpu_alloc_size_, size,
                    platform::errors::InvalidArgument(
                        "The size of memory (%d) to free exceeds the size of "
                        "allocated gpu memory (%d)",
                        size, gpu_alloc_size_));
170
  gpu_alloc_size_ -= size;
171

172
  platform::RecordedGpuFree(p, size, gpu_id_);
173 174
}

L
liaogang 已提交
175
bool GPUAllocator::UseGpu() const { return true; }
L
liaogang 已提交
176

C
chengduoZH 已提交
177 178
// PINNED memory allows direct DMA transfers by the GPU to and from system
// memory. It’s locked to a physical address.
Y
Yi Wang 已提交
179
void* CUDAPinnedAllocator::Alloc(size_t* index, size_t size) {
C
chengduoZH 已提交
180
  if (size <= 0) return nullptr;
C
chengduoZH 已提交
181

182
  // NOTE: here, we use CUDAPinnedMaxAllocSize as the maximum memory size
C
chengduoZH 已提交
183
  // of host pinned allocation. Allocates too much would reduce
C
chengduoZH 已提交
184
  // the amount of memory available to the underlying system for paging.
C
chengduoZH 已提交
185
  size_t usable =
186
      paddle::platform::CUDAPinnedMaxAllocSize() - cuda_pinnd_alloc_size_;
C
chengduoZH 已提交
187

C
chengduoZH 已提交
188 189 190 191 192 193
  if (size > usable) {
    LOG(WARNING) << "Cannot malloc " << size / 1024.0 / 1024.0
                 << " MB pinned memory."
                 << ", available " << usable / 1024.0 / 1024.0 << " MB";
    return nullptr;
  }
C
chengduoZH 已提交
194

C
chengduoZH 已提交
195
  void* p;
196 197
// PINNED memory is visible to all CUDA contexts.
#ifdef PADDLE_WITH_HIP
198
  hipError_t result = hipHostMalloc(&p, size, hipHostMallocPortable);
199
#else
D
Dun Liang 已提交
200
  cudaError_t result = cudaHostAlloc(&p, size, cudaHostAllocPortable);
201
#endif
C
chengduoZH 已提交
202

203
  if (result == gpuSuccess) {
Y
Yi Wang 已提交
204
    *index = 1;  // PINNED memory
C
chengduoZH 已提交
205
    cuda_pinnd_alloc_size_ += size;
C
chengduoZH 已提交
206
    return p;
C
chengduoZH 已提交
207
  } else {
D
Dun Liang 已提交
208
    LOG(WARNING) << "cudaHostAlloc failed.";
C
chengduoZH 已提交
209
    return nullptr;
C
chengduoZH 已提交
210 211 212 213 214 215
  }

  return nullptr;
}

void CUDAPinnedAllocator::Free(void* p, size_t size, size_t index) {
216
  gpuError_t err;
217 218 219 220 221 222 223 224
  PADDLE_ENFORCE_EQ(index, 1, platform::errors::InvalidArgument(
                                  "The index should be 1, but got %d", index));

  PADDLE_ENFORCE_GE(cuda_pinnd_alloc_size_, size,
                    platform::errors::InvalidArgument(
                        "The size of memory (%d) to free exceeds the size of "
                        "allocated cuda pinned memory (%d)",
                        size, cuda_pinnd_alloc_size_));
C
chengduoZH 已提交
225
  cuda_pinnd_alloc_size_ -= size;
226 227 228 229 230 231 232 233 234
#ifdef PADDLE_WITH_HIP
  err = hipHostFree(p);
  if (err != hipErrorDeinitialized) {
    PADDLE_ENFORCE_EQ(
        err, hipSuccess,
        platform::errors::Fatal(
            "hipFreeHost failed in GPUPinnedAllocator, error code is %d", err));
  }
#else
C
chengduoZH 已提交
235 236 237
  err = cudaFreeHost(p);

  // Purposefully allow cudaErrorCudartUnloading, because
C
chengduoZH 已提交
238
  // that is returned if you ever call cudaFreeHost after the
C
chengduoZH 已提交
239 240
  // driver has already shutdown. This happens only if the
  // process is terminating, in which case we don't care if
C
chengduoZH 已提交
241
  // cudaFreeHost succeeds.
C
chengduoZH 已提交
242
  if (err != cudaErrorCudartUnloading) {
243 244 245 246 247
    PADDLE_ENFORCE_EQ(
        err, 0,
        platform::errors::Fatal(
            "cudaFreeHost failed in GPUPinnedAllocator, error code is %d",
            err));
C
chengduoZH 已提交
248
  }
249
#endif
C
chengduoZH 已提交
250 251
}

C
chengduoZH 已提交
252
bool CUDAPinnedAllocator::UseGpu() const { return false; }
C
chengduoZH 已提交
253

L
Luo Tao 已提交
254
#endif
255

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
#ifdef PADDLE_WITH_ASCEND_CL
void* NPUAllocator::Alloc(size_t* index, size_t size) {
  if (size <= 0) return nullptr;

  void* p;
  auto result = platform::RecordedNPUMalloc(&p, size, npu_id_);

  if (result == ACL_ERROR_NONE) {
    *index = 0;
    npu_alloc_size_ += size;
    return p;
  } else {
    size_t avail, total, actual_avail, actual_total;
    bool is_limited = platform::RecordedNPUMemGetInfo(
        &avail, &total, &actual_avail, &actual_total, npu_id_);

    std::string err_msg;
    if (is_limited) {
      auto limit_size = (total >> 20);
      err_msg = string::Sprintf(
          "\n   3) Set environment variable `FLAGS_gpu_memory_limit_mb` to a "
          "larger value. Currently `FLAGS_gpu_memory_limit_mb` is %d, so the "
          "maximum GPU memory usage is limited to %d MB.\n"
          "      The command is `export FLAGS_gpu_memory_limit_mb=xxx`.",
          limit_size, limit_size);
    }

    PADDLE_THROW_BAD_ALLOC(platform::errors::ResourceExhausted(
        "\n\nOut of memory error on NPU %d. "
        "Cannot allocate %s memory on NPU %d, "
        "available memory is only %s.\n\n"
        "Please check whether there is any other process using NPU %d.\n"
        "1. If yes, please stop them, or start PaddlePaddle on another NPU.\n"
        "2. If no, please try one of the following suggestions:\n"
        "   1) Decrease the batch size of your model.\n"
        "   2) FLAGS_fraction_of_gpu_memory_to_use is %.2lf now, "
        "please set it to a higher value but less than 1.0.\n"
        "      The command is "
        "`export FLAGS_fraction_of_gpu_memory_to_use=xxx`.%s\n\n",
        npu_id_, string::HumanReadableSize(size), npu_id_,
        string::HumanReadableSize(avail), npu_id_,
        FLAGS_fraction_of_gpu_memory_to_use, err_msg));
  }
}

void NPUAllocator::Free(void* p, size_t size, size_t index) {
  VLOG(4) << "Free " << p << " size " << size;
  PADDLE_ENFORCE_EQ(index, 0, platform::errors::InvalidArgument(
                                  "The index should be 0, index is %d", index));
  PADDLE_ENFORCE_GE(npu_alloc_size_, size,
                    platform::errors::InvalidArgument(
                        "The size of memory (%d) to free exceeds the size of "
                        "allocated gpu memory (%d)",
                        size, npu_alloc_size_));
  npu_alloc_size_ -= size;

  platform::RecordedNPUFree(p, size, npu_id_);
}

bool NPUAllocator::UseGpu() const { return true; }
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331

void* NPUPinnedAllocator::Alloc(size_t* index, size_t size) {
  if (size <= 0) return nullptr;

  size_t usable =
      paddle::platform::NPUPinnedMaxAllocSize() - npu_pinnd_alloc_size_;

  if (size > usable) {
    LOG(WARNING) << "Cannot malloc " << size / 1024.0 / 1024.0
                 << " MB pinned memory."
                 << ", available " << usable / 1024.0 / 1024.0 << " MB";
    return nullptr;
  }

  void* p;
  // PINNED memory is visible to all NPU contexts.
332
  auto result = platform::NPUHostMalloc(&p, size);
333 334 335 336 337 338

  if (result == ACL_ERROR_NONE) {
    *index = 1;  // PINNED memory
    npu_pinnd_alloc_size_ += size;
    return p;
  } else {
339
    LOG(WARNING) << "NPUHostMalloc failed.";
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
    return nullptr;
  }

  return nullptr;
}

void NPUPinnedAllocator::Free(void* p, size_t size, size_t index) {
  aclError err;
  PADDLE_ENFORCE_EQ(index, 1, platform::errors::InvalidArgument(
                                  "The index should be 1, but got %d", index));

  PADDLE_ENFORCE_GE(npu_pinnd_alloc_size_, size,
                    platform::errors::InvalidArgument(
                        "The size of memory (%d) to free exceeds the size of "
                        "allocated npu pinned memory (%d)",
                        size, npu_pinnd_alloc_size_));
  npu_pinnd_alloc_size_ -= size;
357
  err = platform::NPUHostFree(p);
358 359 360 361 362

  if (err != ACL_ERROR_NONE) {
    PADDLE_ENFORCE_EQ(
        err, 0,
        platform::errors::Fatal(
363
            "NPUHostFree failed in NPUPinnedAllocator, error code is %d", err));
364 365 366 367 368
  }
}

bool NPUPinnedAllocator::UseGpu() const { return false; }

369 370
#endif

F
fwenguang 已提交
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
#ifdef PADDLE_WITH_MLU
void* MLUAllocator::Alloc(size_t* index, size_t size) {
  if (size <= 0) return nullptr;

  void* p;
  auto result = platform::RecordedMLUMalloc(&p, size, mlu_id_);

  if (result == cnrtSuccess) {
    *index = 0;
    mlu_alloc_size_ += size;
    return p;
  } else {
    size_t avail, total, actual_avail, actual_total;
    bool is_limited = platform::RecordedMLUMemGetInfo(
        &avail, &total, &actual_avail, &actual_total, mlu_id_);
    size_t allocated = total - avail;

    std::string err_msg;
    if (is_limited) {
      auto limit_size = (total >> 20);
      err_msg = string::Sprintf(
          "\n   3) Set environment variable `FLAGS_gpu_memory_limit_mb` to a "
          "larger value. Currently `FLAGS_gpu_memory_limit_mb` is %d, so the "
          "maximum MLU memory usage is limited to %d MB.\n"
          "      The command is `export FLAGS_gpu_memory_limit_mb=xxx`.",
          limit_size, limit_size);
    }

    PADDLE_THROW_BAD_ALLOC(platform::errors::ResourceExhausted(
        "\n\nOut of memory error on MLU %d. "
        "Cannot allocate %s memory on MLU %d, %s memory has been allocated and "
        "available memory is only %s.\n\n"
        "Please check whether there is any other process using MLU %d.\n"
        "1. If yes, please stop them, or start PaddlePaddle on another MLU.\n"
        "2. If no, please try one of the following suggestions:\n"
        "   1) Decrease the batch size of your model.\n"
        "   2) FLAGS_fraction_of_gpu_memory_to_use is %.2lf now, "
        "please set it to a higher value but less than 1.0.\n"
        "      The command is "
        "`export FLAGS_fraction_of_gpu_memory_to_use=xxx`.%s\n\n",
        mlu_id_, string::HumanReadableSize(size), mlu_id_,
        string::HumanReadableSize(allocated), string::HumanReadableSize(avail),
        mlu_id_, FLAGS_fraction_of_gpu_memory_to_use, err_msg));
  }
}

void MLUAllocator::Free(void* p, size_t size, size_t index) {
  PADDLE_ENFORCE_EQ(index, 0, platform::errors::InvalidArgument(
                                  "The index should be 0, index is %d", index));
  PADDLE_ENFORCE_GE(mlu_alloc_size_, size,
                    platform::errors::InvalidArgument(
                        "The size of memory (%d) to free exceeds the size of "
                        "allocated gpu memory (%d)",
                        size, mlu_alloc_size_));
  mlu_alloc_size_ -= size;

  platform::RecordedMLUFree(p, size, mlu_id_);
}

bool MLUAllocator::UseGpu() const { return true; }
#endif

433 434 435
}  // namespace detail
}  // namespace memory
}  // namespace paddle