quantize_linear_op.cc 7.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/quantize_linear_op.h"
13

14 15 16
#include <algorithm>
#include <string>
#include <vector>
17

18 19 20 21 22 23 24 25 26 27
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/fluid/platform/transform.h"
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/impl/clip_kernel_impl.h"

namespace paddle {
namespace operators {

template <typename T>
L
Leo Chen 已提交
28 29
struct ChannelDequantizeFunctorV2<phi::CPUContext, T> {
  void operator()(const phi::CPUContext &dev_ctx,
30 31 32 33 34
                  const framework::Tensor *in,
                  const framework::Tensor *scale,
                  T max_range,
                  const int quant_axis,
                  framework::Tensor *out) {
35 36 37 38
    // Dequant op is before quantized op
    // Dequantize the weight of quantized op
    auto in_dims = in->dims();
    const int64_t channel = in_dims[quant_axis];
39
    const T *scale_factor = scale->data<T>();
40 41 42 43 44 45 46
    if (quant_axis == 0) {
      for (int64_t i = 0; i < channel; i++) {
        T s = scale_factor[i];
        framework::Tensor one_channel_in = in->Slice(i, i + 1);
        framework::Tensor one_channel_out = out->Slice(i, i + 1);
        auto in_e = framework::EigenVector<T>::Flatten(one_channel_in);
        auto out_e = framework::EigenVector<T>::Flatten(one_channel_out);
47
        auto &dev = *dev_ctx.eigen_device();
48 49 50 51 52 53 54 55 56
        out_e.device(dev) = in_e * s / max_range;
      }
    } else if (quant_axis == 1) {
      int64_t out_iter = 1;
      for (int i = 0; i < quant_axis; i++) {
        out_iter *= in_dims[i];
      }
      int64_t step_i = in->numel() / out_iter;
      int64_t step_j = in->numel() / (out_iter * channel);
57 58
      auto *in_data = in->data<T>();
      auto *out_data = out->mutable_data<T>(dev_ctx.GetPlace());
59 60
      for (int64_t i = 0; i < out_iter; i++) {
        for (int64_t j = 0; j < channel; j++) {
61 62
          auto *cur_in = in_data + i * step_i + j * step_j;
          auto *cur_out = out_data + i * step_i + j * step_j;
63 64 65 66 67 68 69 70 71 72 73 74
          T s = scale_factor[j];
          for (int64_t k = 0; k < step_j; k++) {
            *cur_out = (*cur_in) * s / max_range;
            ++cur_in;
            ++cur_out;
          }
        }
      }
    }
  }
};

L
Leo Chen 已提交
75 76
template struct ChannelDequantizeFunctorV2<phi::CPUContext, float>;
template struct ChannelDequantizeFunctorV2<phi::CPUContext, double>;
77 78 79 80

class QuantizeLinearOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
81
  void InferShape(framework::InferShapeContext *ctx) const override {
82 83
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "QuantizeLinear");
    OP_INOUT_CHECK(ctx->HasInput("Scale"), "Input", "Scale", "QuantizeLinear");
84 85
    OP_INOUT_CHECK(
        ctx->HasInput("ZeroPoint"), "Input", "ZeroPoint", "QuantizeLinear");
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
    OP_INOUT_CHECK(ctx->HasOutput("Y"), "Output", "Y", "QuantizeLinear");
    ctx->SetOutputDim("Y", ctx->GetInputDim("X"));
    int quant_axis = ctx->Attrs().Get<int>("quant_axis");
    if (ctx->HasOutput("OutScale")) {
      if (quant_axis < 0) {
        ctx->SetOutputDim("OutScale", {1});
      } else {
        ctx->SetOutputDim("OutScale", {ctx->GetInputDim("X")[quant_axis]});
      }
    }
    ctx->ShareLoD("X", /*->*/ "Y");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
101
      const framework::ExecutionContext &ctx) const override {
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
  }
};

class QuantizeLinearOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor) Input is float data type.");
    AddInput("Scale", "(Tensor) Input is float data type.");
    AddInput("ZeroPoint", "(Tensor) Input is float data type.");
    AddOutput("Y",
              "(Tensor) Output of quantized low level tensor, "
              "but also saved as float data type.");
    AddOutput("OutScale", "(Tensor) Current scale").AsDispensable().AsExtra();
    AddAttr<int>("quant_axis",
                 "(int, default 0) The axis for quantization. "
                 "For conv2d, depthwise_conv2d, conv2d_transpose "
                 "and mul, the quant_axis is equal to the cout axis.")
        .SetDefault(0)
122
        .AddCustomChecker([](const int &quant_axis) {
123
          PADDLE_ENFORCE_EQ(
124 125
              quant_axis == 0 || quant_axis == 1 || quant_axis == -1,
              true,
126 127 128 129 130 131 132
              platform::errors::InvalidArgument(
                  "'quant_axis' should be 0 or 1, but "
                  "the received is %d",
                  quant_axis));
        });
    AddAttr<int>("bit_length", "(int, default 8)")
        .SetDefault(8)
133 134 135
        .AddCustomChecker([](const int &bit_length) {
          PADDLE_ENFORCE_EQ(bit_length >= 1 && bit_length <= 16,
                            true,
136 137 138 139 140
                            platform::errors::InvalidArgument(
                                "'bit_length' should be between 1 and 16, but "
                                "the received is %d",
                                bit_length));
        });
141 142 143 144 145 146 147
    AddAttr<int>(
        "round_type",
        "(int, default 0) The round type of fp32 to int."
        "0: rounding to nearest ties to even. Eg: round(1.5)=2, round(2.5)=2"
        "1: rounding to nearest ties away from zero. Eg: round(1.5)=2, "
        "round(2.5)=3")
        .SetDefault(0)
148 149 150 151 152 153 154 155 156 157 158
        .AddCustomChecker([](const int &round_type) {
          PADDLE_ENFORCE_EQ(
              round_type == 0 || round_type == 1,
              true,
              platform::errors::InvalidArgument(
                  "'round_type' should be 0 or 1, 0 rounding to "
                  "nearest ties to even and 1 is rounding to nearest "
                  "ties away from zero.but the received is %d",
                  round_type));
        })
        .AsExtra();
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(true);
    AddComment(R"DOC(
The scale of QuantizeLinear operator is a vector.
In detail, each channel of the input X has a scale value.
$$scale_c = max(abs(X_c))$$
$$range = 2^{bit\_length - 1} - 1$$
$$Out_c = round(\frac{X_c * range} {scale_c})$$
In above three formulas, the range value of c is as follow:
$$0 \leq c \lt \ the\ channel\ number\ of\ X$$
)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
L
Leo Chen 已提交
179
using CPU = phi::CPUContext;
180 181

REGISTER_OPERATOR(
182 183 184
    quantize_linear,
    ops::QuantizeLinearOp,
    ops::QuantizeLinearOpMaker,
185 186 187 188 189 190
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);

REGISTER_OP_CPU_KERNEL(quantize_linear, ops::QuantizeLinearKernel<CPU, float>);

REGISTER_OPERATOR(
191 192 193
    dequantize_linear,
    ops::QuantizeLinearOp,
    ops::QuantizeLinearOpMaker,
194 195 196 197 198 199 200
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);

REGISTER_OP_CPU_KERNEL(dequantize_linear,
                       ops::DeQuantizeLinearKernel<CPU, float, float>,
                       ops::DeQuantizeLinearKernel<CPU, int8_t, float>,
                       ops::DeQuantizeLinearKernel<CPU, double, double>);