distributions.py 22.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from . import control_flow
from . import tensor
from . import ops
from . import nn
import math
import numpy as np
import warnings
22
import paddle
23

24 25 26 27 28 29
from ..data_feeder import (
    convert_dtype,
    check_variable_and_dtype,
    check_type,
    check_dtype,
)
30

31
__all__ = ['Uniform', 'Normal', 'Categorical', 'MultivariateNormalDiag']
32 33


34
class Distribution:
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
    """
    Distribution is the abstract base class for probability distributions.
    """

    def sample(self):
        """Sampling from the distribution."""
        raise NotImplementedError

    def entropy(self):
        """The entropy of the distribution."""
        raise NotImplementedError

    def kl_divergence(self, other):
        """The KL-divergence between self distributions and other."""
        raise NotImplementedError

    def log_prob(self, value):
        """Log probability density/mass function."""
        raise NotImplementedError

    def _validate_args(self, *args):
        """
        Argument validation for distribution args
        Args:
            value (float, list, numpy.ndarray, Variable)
        Raises
            ValueError: if one argument is Variable, all arguments should be Variable
        """
        is_variable = False
        is_number = False
        for arg in args:
            if isinstance(arg, tensor.Variable):
                is_variable = True
            else:
                is_number = True

        if is_variable and is_number:
            raise ValueError(
73 74
                'if one argument is Variable, all arguments should be Variable'
            )
75 76 77 78 79 80 81 82 83 84 85 86 87 88

        return is_variable

    def _to_variable(self, *args):
        """
        Argument convert args to Variable

        Args:
            value (float, list, numpy.ndarray, Variable)
        Returns:
            Variable of args.
        """
        numpy_args = []
        variable_args = []
89
        tmp = 0.0
90 91 92 93 94 95 96

        for arg in args:
            valid_arg = False
            for cls in [float, list, np.ndarray, tensor.Variable]:
                if isinstance(arg, cls):
                    valid_arg = True
                    break
97 98 99
            assert (
                valid_arg
            ), "type of input args must be float, list, numpy.ndarray or Variable."
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
            if isinstance(arg, float):
                arg = np.zeros(1) + arg
            arg_np = np.array(arg)
            arg_dtype = arg_np.dtype
            if str(arg_dtype) not in ['float32']:
                warnings.warn(
                    "data type of argument only support float32, your argument will be convert to float32."
                )
                arg_np = arg_np.astype('float32')
            tmp = tmp + arg_np
            numpy_args.append(arg_np)

        dtype = tmp.dtype
        for arg in numpy_args:
            arg_broadcasted, _ = np.broadcast_arrays(arg, tmp)
            arg_variable = tensor.create_tensor(dtype=dtype)
            tensor.assign(arg_broadcasted, arg_variable)
            variable_args.append(arg_variable)

        return tuple(variable_args)


class Uniform(Distribution):
123
    r"""Uniform distribution with `low` and `high` parameters.
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146

    Mathematical Details

    The probability density function (pdf) is,

    .. math::

        pdf(x; a, b) = \\frac{1}{Z}, \ a <=x <b

    .. math::

        Z = b - a

    In the above equation:

    * :math:`low = a`,
    * :math:`high = b`,
    * :math:`Z`: is the normalizing constant.

    The parameters `low` and `high` must be shaped in a way that supports
    broadcasting (e.g., `high - low` is a valid operation).

    Args:
L
LielinJiang 已提交
147 148
        low(float|list|numpy.ndarray|Variable): The lower boundary of uniform distribution.The data type is float32
        high(float|list|numpy.ndarray|Variable): The higher boundary of uniform distribution.The data type is float32
149 150 151 152

    Examples:
        .. code-block:: python

L
LielinJiang 已提交
153
          import numpy as np
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
          from paddle.fluid import layers
          from paddle.fluid.layers import Uniform

          # Without broadcasting, a single uniform distribution [3, 4]:
          u1 = Uniform(low=3.0, high=4.0)
          # 2 distributions [1, 3], [2, 4]
          u2 = Uniform(low=[1.0, 2.0],
                        high=[3.0, 4.0])
          # 4 distributions
          u3 = Uniform(low=[[1.0, 2.0],
                    [3.0, 4.0]],
               high=[[1.5, 2.5],
                     [3.5, 4.5]])

          # With broadcasting:
          u4 = Uniform(low=3.0, high=[5.0, 6.0, 7.0])

L
LielinJiang 已提交
171 172 173 174
          # Complete example
          value_npdata = np.array([0.8], dtype="float32")
          value_tensor = layers.create_tensor(dtype="float32")
          layers.assign(value_npdata, value_tensor)
175

L
LielinJiang 已提交
176
          uniform = Uniform([0.], [2.])
177

L
LielinJiang 已提交
178 179
          sample = uniform.sample([2])
          # a random tensor created by uniform distribution with shape: [2, 1]
180
          entropy = uniform.entropy()
L
LielinJiang 已提交
181 182 183
          # [0.6931472] with shape: [1]
          lp = uniform.log_prob(value_tensor)
          # [-0.6931472] with shape: [1]
184 185 186
    """

    def __init__(self, low, high):
187 188 189 190 191 192
        check_type(
            low, 'low', (float, np.ndarray, tensor.Variable, list), 'Uniform'
        )
        check_type(
            high, 'high', (float, np.ndarray, tensor.Variable, list), 'Uniform'
        )
193

194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
        self.all_arg_is_float = False
        self.batch_size_unknown = False
        if self._validate_args(low, high):
            self.batch_size_unknown = True
            self.low = low
            self.high = high
        else:
            if isinstance(low, float) and isinstance(high, float):
                self.all_arg_is_float = True
            self.low, self.high = self._to_variable(low, high)

    def sample(self, shape, seed=0):
        """Generate samples of the specified shape.

        Args:
          shape (list): 1D `int32`. Shape of the generated samples.
          seed (int): Python integer number.

        Returns:
L
LielinJiang 已提交
213
          Variable: A tensor with prepended dimensions shape.The data type is float32.
214 215

        """
216 217 218
        check_type(shape, 'shape', (list), 'sample')
        check_type(seed, 'seed', (int), 'sample')

219 220 221 222
        batch_shape = list((self.low + self.high).shape)
        if self.batch_size_unknown:
            output_shape = shape + batch_shape
            zero_tmp = tensor.fill_constant_batch_size_like(
223 224
                self.low + self.high, batch_shape + shape, self.low.dtype, 0.0
            )
225
            uniform_random_tmp = nn.uniform_random_batch_size_like(
226 227 228 229 230 231
                zero_tmp, zero_tmp.shape, min=0.0, max=1.0, seed=seed
            )
            output = (
                uniform_random_tmp * (zero_tmp + self.high - self.low)
                + self.low
            )
232 233 234
            return nn.reshape(output, output_shape)
        else:
            output_shape = shape + batch_shape
235 236 237 238 239 240 241 242
            output = (
                nn.uniform_random(output_shape, seed=seed)
                * (
                    tensor.zeros(output_shape, dtype=self.low.dtype)
                    + (self.high - self.low)
                )
                + self.low
            )
243 244 245 246 247 248 249 250 251 252 253 254
            if self.all_arg_is_float:
                return nn.reshape(output, shape)
            else:
                return output

    def log_prob(self, value):
        """Log probability density/mass function.

        Args:
          value (Variable): The input tensor.

        Returns:
L
LielinJiang 已提交
255
          Variable: log probability.The data type is same with value.
256 257

        """
258 259 260
        check_variable_and_dtype(
            value, 'value', ['float32', 'float64'], 'log_prob'
        )
261

262 263 264 265 266 267 268 269 270 271
        lb_bool = control_flow.less_than(self.low, value)
        ub_bool = control_flow.less_than(value, self.high)
        lb = tensor.cast(lb_bool, dtype=value.dtype)
        ub = tensor.cast(ub_bool, dtype=value.dtype)
        return nn.log(lb * ub) - nn.log(self.high - self.low)

    def entropy(self):
        """Shannon entropy in nats.

        Returns:
L
LielinJiang 已提交
272
          Variable: Shannon entropy of uniform distribution.The data type is float32.
273 274 275 276 277 278

        """
        return nn.log(self.high - self.low)


class Normal(Distribution):
279
    r"""The Normal distribution with location `loc` and `scale` parameters.
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299

    Mathematical details

    The probability density function (pdf) is,

    .. math::

        pdf(x; \mu, \sigma) = \\frac{1}{Z}e^{\\frac {-0.5 (x - \mu)^2}  {\sigma^2} }

    .. math::

        Z = (2 \pi \sigma^2)^{0.5}

    In the above equation:

    * :math:`loc = \mu`: is the mean.
    * :math:`scale = \sigma`: is the std.
    * :math:`Z`: is the normalization constant.

    Args:
L
LielinJiang 已提交
300 301
        loc(float|list|numpy.ndarray|Variable): The mean of normal distribution.The data type is float32.
        scale(float|list|numpy.ndarray|Variable): The std of normal distribution.The data type is float32.
302 303 304

    Examples:
        .. code-block:: python
305

306
          import numpy as np
307 308 309 310 311 312 313
          from paddle.fluid import layers
          from paddle.fluid.layers import Normal

          # Define a single scalar Normal distribution.
          dist = Normal(loc=0., scale=3.)
          # Define a batch of two scalar valued Normals.
          # The first has mean 1 and standard deviation 11, the second 2 and 22.
L
LielinJiang 已提交
314
          dist = Normal(loc=[1., 2.], scale=[11., 22.])
315 316 317 318 319
          # Get 3 samples, returning a 3 x 2 tensor.
          dist.sample([3])

          # Define a batch of two scalar valued Normals.
          # Both have mean 1, but different standard deviations.
L
LielinJiang 已提交
320
          dist = Normal(loc=1., scale=[11., 22.])
321

L
LielinJiang 已提交
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
          # Complete example
          value_npdata = np.array([0.8], dtype="float32")
          value_tensor = layers.create_tensor(dtype="float32")
          layers.assign(value_npdata, value_tensor)

          normal_a = Normal([0.], [1.])
          normal_b = Normal([0.5], [2.])

          sample = normal_a.sample([2])
          # a random tensor created by normal distribution with shape: [2, 1]
          entropy = normal_a.entropy()
          # [1.4189385] with shape: [1]
          lp = normal_a.log_prob(value_tensor)
          # [-1.2389386] with shape: [1]
          kl = normal_a.kl_divergence(normal_b)
          # [0.34939718] with shape: [1]
338 339 340
    """

    def __init__(self, loc, scale):
341 342 343 344 345 346
        check_type(
            loc, 'loc', (float, np.ndarray, tensor.Variable, list), 'Normal'
        )
        check_type(
            scale, 'scale', (float, np.ndarray, tensor.Variable, list), 'Normal'
        )
347

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
        self.batch_size_unknown = False
        self.all_arg_is_float = False
        if self._validate_args(loc, scale):
            self.batch_size_unknown = True
            self.loc = loc
            self.scale = scale
        else:
            if isinstance(loc, float) and isinstance(scale, float):
                self.all_arg_is_float = True
            self.loc, self.scale = self._to_variable(loc, scale)

    def sample(self, shape, seed=0):
        """Generate samples of the specified shape.

        Args:
          shape (list): 1D `int32`. Shape of the generated samples.
          seed (int): Python integer number.

        Returns:
L
LielinJiang 已提交
367
          Variable: A tensor with prepended dimensions shape.The data type is float32.
368 369

        """
370 371 372 373

        check_type(shape, 'shape', (list), 'sample')
        check_type(seed, 'seed', (int), 'sample')

374 375 376 377 378
        batch_shape = list((self.loc + self.scale).shape)

        if self.batch_size_unknown:
            output_shape = shape + batch_shape
            zero_tmp = tensor.fill_constant_batch_size_like(
379 380
                self.loc + self.scale, batch_shape + shape, self.loc.dtype, 0.0
            )
381
            zero_tmp_shape = nn.shape(zero_tmp)
382 383 384
            normal_random_tmp = nn.gaussian_random(
                zero_tmp_shape, mean=0.0, std=1.0, seed=seed
            )
385 386 387 388
            output = normal_random_tmp * (zero_tmp + self.scale) + self.loc
            return nn.reshape(output, output_shape)
        else:
            output_shape = shape + batch_shape
389 390 391 392 393 394 395 396
            output = (
                nn.gaussian_random(output_shape, mean=0.0, std=1.0, seed=seed)
                * (
                    tensor.zeros(output_shape, dtype=self.loc.dtype)
                    + self.scale
                )
                + self.loc
            )
397 398 399 400 401 402 403 404 405
            if self.all_arg_is_float:
                return nn.reshape(output, shape)
            else:
                return output

    def entropy(self):
        """Shannon entropy in nats.

        Returns:
L
LielinJiang 已提交
406
          Variable: Shannon entropy of normal distribution.The data type is float32.
407 408 409

        """
        batch_shape = list((self.loc + self.scale).shape)
410 411 412 413 414 415
        zero_tmp = tensor.fill_constant_batch_size_like(
            self.loc + self.scale, batch_shape, self.loc.dtype, 0.0
        )
        return (
            0.5 + 0.5 * math.log(2 * math.pi) + nn.log((self.scale + zero_tmp))
        )
416 417 418 419 420 421 422 423

    def log_prob(self, value):
        """Log probability density/mass function.

        Args:
          value (Variable): The input tensor.

        Returns:
L
LielinJiang 已提交
424
          Variable: log probability.The data type is same with value.
425 426

        """
427 428 429
        check_variable_and_dtype(
            value, 'value', ['float32', 'float64'], 'log_prob'
        )
430

431 432
        var = self.scale * self.scale
        log_scale = nn.log(self.scale)
433 434 435 436 437
        return (
            -1.0 * ((value - self.loc) * (value - self.loc)) / (2.0 * var)
            - log_scale
            - math.log(math.sqrt(2.0 * math.pi))
        )
438 439 440 441 442 443 444 445

    def kl_divergence(self, other):
        """The KL-divergence between two normal distributions.

        Args:
            other (Normal): instance of Normal.

        Returns:
L
LielinJiang 已提交
446
            Variable: kl-divergence between two normal distributions.The data type is float32.
447 448

        """
449 450 451

        check_type(other, 'other', Normal, 'kl_divergence')

452
        var_ratio = self.scale / other.scale
453
        var_ratio = var_ratio * var_ratio
454
        t1 = (self.loc - other.loc) / other.scale
455 456
        t1 = t1 * t1
        return 0.5 * (var_ratio + t1 - 1.0 - nn.log(var_ratio))
457 458 459


class Categorical(Distribution):
460
    r"""
461 462 463
    Categorical distribution is a discrete probability distribution that
    describes the possible results of a random variable that can take on
    one of K possible categories, with the probability of each category
464 465
    separately specified.

466 467 468 469 470 471 472 473 474 475
    The probability mass function (pmf) is:

    .. math::

        pmf(k; p_i) = \prod_{i=1}^{k} p_i^{[x=i]}

    In the above equation:

    * :math:`[x=i]` : it evaluates to 1 if :math:`x==i` , 0 otherwise.

476
    Args:
477
        logits(list|numpy.ndarray|Variable): The logits input of categorical distribution. The data type is float32.
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492

    Examples:
        .. code-block:: python

          import numpy as np
          from paddle.fluid import layers
          from paddle.fluid.layers import Categorical

          a_logits_npdata = np.array([-0.602,-0.602], dtype="float32")
          a_logits_tensor = layers.create_tensor(dtype="float32")
          layers.assign(a_logits_npdata, a_logits_tensor)

          b_logits_npdata = np.array([-0.102,-0.112], dtype="float32")
          b_logits_tensor = layers.create_tensor(dtype="float32")
          layers.assign(b_logits_npdata, b_logits_tensor)
493

494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
          a = Categorical(a_logits_tensor)
          b = Categorical(b_logits_tensor)

          a.entropy()
          # [0.6931472] with shape: [1]

          b.entropy()
          # [0.6931347] with shape: [1]

          a.kl_divergence(b)
          # [1.2516975e-05] with shape: [1]

    """

    def __init__(self, logits):
        """
        Args:
511
            logits(list|numpy.ndarray|Variable): The logits input of categorical distribution. The data type is float32.
512
        """
513 514 515
        check_type(
            logits, 'logits', (np.ndarray, tensor.Variable, list), 'Categorical'
        )
516

517 518 519 520 521 522 523 524 525
        if self._validate_args(logits):
            self.logits = logits
        else:
            self.logits = self._to_variable(logits)[0]

    def kl_divergence(self, other):
        """The KL-divergence between two Categorical distributions.

        Args:
526
            other (Categorical): instance of Categorical. The data type is float32.
527 528 529 530 531

        Returns:
            Variable: kl-divergence between two Categorical distributions.

        """
532
        check_type(other, 'other', Categorical, 'kl_divergence')
533 534 535

        logits = self.logits - nn.reduce_max(self.logits, dim=-1, keep_dim=True)
        other_logits = other.logits - nn.reduce_max(
536 537
            other.logits, dim=-1, keep_dim=True
        )
538 539 540 541 542 543 544 545
        e_logits = ops.exp(logits)
        other_e_logits = ops.exp(other_logits)
        z = nn.reduce_sum(e_logits, dim=-1, keep_dim=True)
        other_z = nn.reduce_sum(other_e_logits, dim=-1, keep_dim=True)
        prob = e_logits / z
        kl = nn.reduce_sum(
            prob * (logits - nn.log(z) - other_logits + nn.log(other_z)),
            dim=-1,
546 547
            keep_dim=True,
        )
548 549 550 551 552 553 554

        return kl

    def entropy(self):
        """Shannon entropy in nats.

        Returns:
555
          Variable: Shannon entropy of Categorical distribution. The data type is float32.
556 557 558 559 560 561 562

        """
        logits = self.logits - nn.reduce_max(self.logits, dim=-1, keep_dim=True)
        e_logits = ops.exp(logits)
        z = nn.reduce_sum(e_logits, dim=-1, keep_dim=True)
        prob = e_logits / z
        entropy = -1.0 * nn.reduce_sum(
563 564
            prob * (logits - nn.log(z)), dim=-1, keep_dim=True
        )
565 566 567 568 569

        return entropy


class MultivariateNormalDiag(Distribution):
570
    r"""
571 572 573
    A multivariate normal (also called Gaussian) distribution parameterized by a mean vector
    and a covariance matrix.

574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
    The probability density function (pdf) is:

    .. math::

        pdf(x; loc, scale) = \\frac{e^{-\\frac{||y||^2}{2}}}{Z}

    where:
    .. math::

        y = inv(scale) @ (x - loc)
        Z = (2\\pi)^{0.5k} |det(scale)|


    In the above equation:

    * :math:`inv` : denotes to take the inverse of the matrix.
    * :math:`@` : denotes matrix multiplication.
    * :math:`det` : denotes to evaluate the determinant.

593
    Args:
594 595 596 597 598
        loc(list|numpy.ndarray|Variable): The mean of multivariateNormal distribution with shape :math:`[k]` .
            The data type is float32.
        scale(list|numpy.ndarray|Variable): The positive definite diagonal covariance matrix of multivariateNormal
            distribution  with shape :math:`[k, k]` . All elements are 0 except diagonal elements. The data type is
            float32.
599 600 601

    Examples:
        .. code-block:: python
602

603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
            import numpy as np
            from paddle.fluid import layers
            from paddle.fluid.layers import MultivariateNormalDiag

            a_loc_npdata = np.array([0.3,0.5],dtype="float32")
            a_loc_tensor = layers.create_tensor(dtype="float32")
            layers.assign(a_loc_npdata, a_loc_tensor)


            a_scale_npdata = np.array([[0.4,0],[0,0.5]],dtype="float32")
            a_scale_tensor = layers.create_tensor(dtype="float32")
            layers.assign(a_scale_npdata, a_scale_tensor)

            b_loc_npdata = np.array([0.2,0.4],dtype="float32")
            b_loc_tensor = layers.create_tensor(dtype="float32")
            layers.assign(b_loc_npdata, b_loc_tensor)

            b_scale_npdata = np.array([[0.3,0],[0,0.4]],dtype="float32")
            b_scale_tensor = layers.create_tensor(dtype="float32")
            layers.assign(b_scale_npdata, b_scale_tensor)

            a = MultivariateNormalDiag(a_loc_tensor, a_scale_tensor)
            b = MultivariateNormalDiag(b_loc_tensor, b_scale_tensor)
626

627 628 629
            a.entropy()
            # [2.033158] with shape: [1]
            b.entropy()
T
tianshuo78520a 已提交
630
            # [1.7777451] with shape: [1]
631 632 633

            a.kl_divergence(b)
            # [0.06542051] with shape: [1]
634

635 636 637
    """

    def __init__(self, loc, scale):
638 639 640 641 642 643 644 645 646 647 648 649
        check_type(
            loc,
            'loc',
            (np.ndarray, tensor.Variable, list),
            'MultivariateNormalDiag',
        )
        check_type(
            scale,
            'scale',
            (np.ndarray, tensor.Variable, list),
            'MultivariateNormalDiag',
        )
650

651 652 653 654 655 656 657 658 659 660 661
        if self._validate_args(loc, scale):
            self.loc = loc
            self.scale = scale
        else:
            self.loc, self.scale = self._to_variable(loc, scale)

    def _det(self, value):

        batch_shape = list(value.shape)
        one_all = tensor.ones(shape=batch_shape, dtype=self.loc.dtype)
        one_diag = tensor.diag(
662 663
            tensor.ones(shape=[batch_shape[0]], dtype=self.loc.dtype)
        )
664
        det_diag = paddle.prod(value + one_all - one_diag)
665 666 667 668 669 670 671 672

        return det_diag

    def _inv(self, value):

        batch_shape = list(value.shape)
        one_all = tensor.ones(shape=batch_shape, dtype=self.loc.dtype)
        one_diag = tensor.diag(
673 674
            tensor.ones(shape=[batch_shape[0]], dtype=self.loc.dtype)
        )
675
        inv_diag = paddle.pow(value, (one_all - 2 * one_diag))
676 677 678 679 680 681 682

        return inv_diag

    def entropy(self):
        """Shannon entropy in nats.

        Returns:
683
          Variable: Shannon entropy of Multivariate Normal distribution. The data type is float32.
684 685

        """
686 687 688 689
        entropy = 0.5 * (
            self.scale.shape[0] * (1.0 + math.log(2 * math.pi))
            + nn.log(self._det(self.scale))
        )
690 691 692 693 694 695 696 697 698 699

        return entropy

    def kl_divergence(self, other):
        """The KL-divergence between two Multivariate Normal distributions.

        Args:
            other (MultivariateNormalDiag): instance of Multivariate Normal.

        Returns:
700
            Variable: kl-divergence between two Multivariate Normal distributions. The data type is float32.
701 702

        """
703
        check_type(other, 'other', MultivariateNormalDiag, 'kl_divergence')
704 705

        tr_cov_matmul = nn.reduce_sum(self._inv(other.scale) * self.scale)
706 707 708
        loc_matmul_cov = nn.matmul(
            (other.loc - self.loc), self._inv(other.scale)
        )
709 710 711 712 713 714
        tri_matmul = nn.matmul(loc_matmul_cov, (other.loc - self.loc))
        k = list(self.scale.shape)[0]
        ln_cov = nn.log(self._det(other.scale)) - nn.log(self._det(self.scale))
        kl = 0.5 * (tr_cov_matmul + tri_matmul - k + ln_cov)

        return kl