distributions.py 22.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from . import control_flow
from . import tensor
from . import ops
from . import nn
import math
import numpy as np
import warnings

23 24
from ..data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype

25
__all__ = ['Uniform', 'Normal', 'Categorical', 'MultivariateNormalDiag']
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113


class Distribution(object):
    """
    Distribution is the abstract base class for probability distributions.
    """

    def sample(self):
        """Sampling from the distribution."""
        raise NotImplementedError

    def entropy(self):
        """The entropy of the distribution."""
        raise NotImplementedError

    def kl_divergence(self, other):
        """The KL-divergence between self distributions and other."""
        raise NotImplementedError

    def log_prob(self, value):
        """Log probability density/mass function."""
        raise NotImplementedError

    def _validate_args(self, *args):
        """
        Argument validation for distribution args
        Args:
            value (float, list, numpy.ndarray, Variable)
        Raises
            ValueError: if one argument is Variable, all arguments should be Variable
        """
        is_variable = False
        is_number = False
        for arg in args:
            if isinstance(arg, tensor.Variable):
                is_variable = True
            else:
                is_number = True

        if is_variable and is_number:
            raise ValueError(
                'if one argument is Variable, all arguments should be Variable')

        return is_variable

    def _to_variable(self, *args):
        """
        Argument convert args to Variable

        Args:
            value (float, list, numpy.ndarray, Variable)
        Returns:
            Variable of args.
        """
        numpy_args = []
        variable_args = []
        tmp = 0.

        for arg in args:
            valid_arg = False
            for cls in [float, list, np.ndarray, tensor.Variable]:
                if isinstance(arg, cls):
                    valid_arg = True
                    break
            assert valid_arg, "type of input args must be float, list, numpy.ndarray or Variable."
            if isinstance(arg, float):
                arg = np.zeros(1) + arg
            arg_np = np.array(arg)
            arg_dtype = arg_np.dtype
            if str(arg_dtype) not in ['float32']:
                warnings.warn(
                    "data type of argument only support float32, your argument will be convert to float32."
                )
                arg_np = arg_np.astype('float32')
            tmp = tmp + arg_np
            numpy_args.append(arg_np)

        dtype = tmp.dtype
        for arg in numpy_args:
            arg_broadcasted, _ = np.broadcast_arrays(arg, tmp)
            arg_variable = tensor.create_tensor(dtype=dtype)
            tensor.assign(arg_broadcasted, arg_variable)
            variable_args.append(arg_variable)

        return tuple(variable_args)


class Uniform(Distribution):
114
    r"""Uniform distribution with `low` and `high` parameters.
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137

    Mathematical Details

    The probability density function (pdf) is,

    .. math::

        pdf(x; a, b) = \\frac{1}{Z}, \ a <=x <b

    .. math::

        Z = b - a

    In the above equation:

    * :math:`low = a`,
    * :math:`high = b`,
    * :math:`Z`: is the normalizing constant.

    The parameters `low` and `high` must be shaped in a way that supports
    broadcasting (e.g., `high - low` is a valid operation).

    Args:
L
LielinJiang 已提交
138 139
        low(float|list|numpy.ndarray|Variable): The lower boundary of uniform distribution.The data type is float32
        high(float|list|numpy.ndarray|Variable): The higher boundary of uniform distribution.The data type is float32
140 141 142 143

    Examples:
        .. code-block:: python

L
LielinJiang 已提交
144
          import numpy as np
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
          from paddle.fluid import layers
          from paddle.fluid.layers import Uniform

          # Without broadcasting, a single uniform distribution [3, 4]:
          u1 = Uniform(low=3.0, high=4.0)
          # 2 distributions [1, 3], [2, 4]
          u2 = Uniform(low=[1.0, 2.0],
                        high=[3.0, 4.0])
          # 4 distributions
          u3 = Uniform(low=[[1.0, 2.0],
                    [3.0, 4.0]],
               high=[[1.5, 2.5],
                     [3.5, 4.5]])

          # With broadcasting:
          u4 = Uniform(low=3.0, high=[5.0, 6.0, 7.0])

L
LielinJiang 已提交
162 163 164 165
          # Complete example
          value_npdata = np.array([0.8], dtype="float32")
          value_tensor = layers.create_tensor(dtype="float32")
          layers.assign(value_npdata, value_tensor)
166

L
LielinJiang 已提交
167
          uniform = Uniform([0.], [2.])
168

L
LielinJiang 已提交
169 170
          sample = uniform.sample([2])
          # a random tensor created by uniform distribution with shape: [2, 1]
171
          entropy = uniform.entropy()
L
LielinJiang 已提交
172 173 174
          # [0.6931472] with shape: [1]
          lp = uniform.log_prob(value_tensor)
          # [-0.6931472] with shape: [1]
175 176 177
    """

    def __init__(self, low, high):
178 179 180 181 182
        check_type(low, 'low', (float, np.ndarray, tensor.Variable, list),
                   'Uniform')
        check_type(high, 'high', (float, np.ndarray, tensor.Variable, list),
                   'Uniform')

183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
        self.all_arg_is_float = False
        self.batch_size_unknown = False
        if self._validate_args(low, high):
            self.batch_size_unknown = True
            self.low = low
            self.high = high
        else:
            if isinstance(low, float) and isinstance(high, float):
                self.all_arg_is_float = True
            self.low, self.high = self._to_variable(low, high)

    def sample(self, shape, seed=0):
        """Generate samples of the specified shape.

        Args:
          shape (list): 1D `int32`. Shape of the generated samples.
          seed (int): Python integer number.

        Returns:
L
LielinJiang 已提交
202
          Variable: A tensor with prepended dimensions shape.The data type is float32.
203 204

        """
205 206 207
        check_type(shape, 'shape', (list), 'sample')
        check_type(seed, 'seed', (int), 'sample')

208 209 210 211 212 213 214
        batch_shape = list((self.low + self.high).shape)
        if self.batch_size_unknown:
            output_shape = shape + batch_shape
            zero_tmp = tensor.fill_constant_batch_size_like(
                self.low + self.high, batch_shape + shape, self.low.dtype, 0.)
            uniform_random_tmp = nn.uniform_random_batch_size_like(
                zero_tmp, zero_tmp.shape, min=0., max=1., seed=seed)
215 216
            output = uniform_random_tmp * (zero_tmp + self.high -
                                           self.low) + self.low
217 218 219
            return nn.reshape(output, output_shape)
        else:
            output_shape = shape + batch_shape
220 221 222
            output = nn.uniform_random(output_shape, seed=seed) * (
                tensor.zeros(output_shape, dtype=self.low.dtype) +
                (self.high - self.low)) + self.low
223 224 225 226 227 228 229 230 231 232 233 234
            if self.all_arg_is_float:
                return nn.reshape(output, shape)
            else:
                return output

    def log_prob(self, value):
        """Log probability density/mass function.

        Args:
          value (Variable): The input tensor.

        Returns:
L
LielinJiang 已提交
235
          Variable: log probability.The data type is same with value.
236 237

        """
238 239 240
        check_variable_and_dtype(value, 'value', ['float32', 'float64'],
                                 'log_prob')

241 242 243 244 245 246 247 248 249 250
        lb_bool = control_flow.less_than(self.low, value)
        ub_bool = control_flow.less_than(value, self.high)
        lb = tensor.cast(lb_bool, dtype=value.dtype)
        ub = tensor.cast(ub_bool, dtype=value.dtype)
        return nn.log(lb * ub) - nn.log(self.high - self.low)

    def entropy(self):
        """Shannon entropy in nats.

        Returns:
L
LielinJiang 已提交
251
          Variable: Shannon entropy of uniform distribution.The data type is float32.
252 253 254 255 256 257

        """
        return nn.log(self.high - self.low)


class Normal(Distribution):
258
    r"""The Normal distribution with location `loc` and `scale` parameters.
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278

    Mathematical details

    The probability density function (pdf) is,

    .. math::

        pdf(x; \mu, \sigma) = \\frac{1}{Z}e^{\\frac {-0.5 (x - \mu)^2}  {\sigma^2} }

    .. math::

        Z = (2 \pi \sigma^2)^{0.5}

    In the above equation:

    * :math:`loc = \mu`: is the mean.
    * :math:`scale = \sigma`: is the std.
    * :math:`Z`: is the normalization constant.

    Args:
L
LielinJiang 已提交
279 280
        loc(float|list|numpy.ndarray|Variable): The mean of normal distribution.The data type is float32.
        scale(float|list|numpy.ndarray|Variable): The std of normal distribution.The data type is float32.
281 282 283

    Examples:
        .. code-block:: python
284

285
          import numpy as np
286 287 288 289 290 291 292
          from paddle.fluid import layers
          from paddle.fluid.layers import Normal

          # Define a single scalar Normal distribution.
          dist = Normal(loc=0., scale=3.)
          # Define a batch of two scalar valued Normals.
          # The first has mean 1 and standard deviation 11, the second 2 and 22.
L
LielinJiang 已提交
293
          dist = Normal(loc=[1., 2.], scale=[11., 22.])
294 295 296 297 298
          # Get 3 samples, returning a 3 x 2 tensor.
          dist.sample([3])

          # Define a batch of two scalar valued Normals.
          # Both have mean 1, but different standard deviations.
L
LielinJiang 已提交
299
          dist = Normal(loc=1., scale=[11., 22.])
300

L
LielinJiang 已提交
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
          # Complete example
          value_npdata = np.array([0.8], dtype="float32")
          value_tensor = layers.create_tensor(dtype="float32")
          layers.assign(value_npdata, value_tensor)

          normal_a = Normal([0.], [1.])
          normal_b = Normal([0.5], [2.])

          sample = normal_a.sample([2])
          # a random tensor created by normal distribution with shape: [2, 1]
          entropy = normal_a.entropy()
          # [1.4189385] with shape: [1]
          lp = normal_a.log_prob(value_tensor)
          # [-1.2389386] with shape: [1]
          kl = normal_a.kl_divergence(normal_b)
          # [0.34939718] with shape: [1]
317 318 319
    """

    def __init__(self, loc, scale):
320 321 322 323 324
        check_type(loc, 'loc', (float, np.ndarray, tensor.Variable, list),
                   'Normal')
        check_type(scale, 'scale', (float, np.ndarray, tensor.Variable, list),
                   'Normal')

325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
        self.batch_size_unknown = False
        self.all_arg_is_float = False
        if self._validate_args(loc, scale):
            self.batch_size_unknown = True
            self.loc = loc
            self.scale = scale
        else:
            if isinstance(loc, float) and isinstance(scale, float):
                self.all_arg_is_float = True
            self.loc, self.scale = self._to_variable(loc, scale)

    def sample(self, shape, seed=0):
        """Generate samples of the specified shape.

        Args:
          shape (list): 1D `int32`. Shape of the generated samples.
          seed (int): Python integer number.

        Returns:
L
LielinJiang 已提交
344
          Variable: A tensor with prepended dimensions shape.The data type is float32.
345 346

        """
347 348 349 350

        check_type(shape, 'shape', (list), 'sample')
        check_type(seed, 'seed', (int), 'sample')

351 352 353 354 355 356
        batch_shape = list((self.loc + self.scale).shape)

        if self.batch_size_unknown:
            output_shape = shape + batch_shape
            zero_tmp = tensor.fill_constant_batch_size_like(
                self.loc + self.scale, batch_shape + shape, self.loc.dtype, 0.)
357
            zero_tmp_shape = nn.shape(zero_tmp)
358 359 360 361
            normal_random_tmp = nn.gaussian_random(zero_tmp_shape,
                                                   mean=0.,
                                                   std=1.,
                                                   seed=seed)
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
            output = normal_random_tmp * (zero_tmp + self.scale) + self.loc
            return nn.reshape(output, output_shape)
        else:
            output_shape = shape + batch_shape
            output = nn.gaussian_random(output_shape, mean=0., std=1., seed=seed) * \
                     (tensor.zeros(output_shape, dtype=self.loc.dtype) + self.scale) + self.loc
            if self.all_arg_is_float:
                return nn.reshape(output, shape)
            else:
                return output

    def entropy(self):
        """Shannon entropy in nats.

        Returns:
L
LielinJiang 已提交
377
          Variable: Shannon entropy of normal distribution.The data type is float32.
378 379 380

        """
        batch_shape = list((self.loc + self.scale).shape)
381 382 383
        zero_tmp = tensor.fill_constant_batch_size_like(self.loc + self.scale,
                                                        batch_shape,
                                                        self.loc.dtype, 0.)
384 385 386 387 388 389 390 391 392 393
        return 0.5 + 0.5 * math.log(2 * math.pi) + nn.log(
            (self.scale + zero_tmp))

    def log_prob(self, value):
        """Log probability density/mass function.

        Args:
          value (Variable): The input tensor.

        Returns:
L
LielinJiang 已提交
394
          Variable: log probability.The data type is same with value.
395 396

        """
397 398 399
        check_variable_and_dtype(value, 'value', ['float32', 'float64'],
                                 'log_prob')

400 401
        var = self.scale * self.scale
        log_scale = nn.log(self.scale)
402 403 404
        return -1. * ((value - self.loc) *
                      (value - self.loc)) / (2. * var) - log_scale - math.log(
                          math.sqrt(2. * math.pi))
405 406 407 408 409 410 411 412

    def kl_divergence(self, other):
        """The KL-divergence between two normal distributions.

        Args:
            other (Normal): instance of Normal.

        Returns:
L
LielinJiang 已提交
413
            Variable: kl-divergence between two normal distributions.The data type is float32.
414 415

        """
416 417 418

        check_type(other, 'other', Normal, 'kl_divergence')

419 420 421 422 423
        var_ratio = self.scale / other.scale
        var_ratio = (var_ratio * var_ratio)
        t1 = (self.loc - other.loc) / other.scale
        t1 = (t1 * t1)
        return 0.5 * (var_ratio + t1 - 1. - nn.log(var_ratio))
424 425 426


class Categorical(Distribution):
427
    r"""
428 429 430
    Categorical distribution is a discrete probability distribution that
    describes the possible results of a random variable that can take on
    one of K possible categories, with the probability of each category
431 432
    separately specified.

433 434 435 436 437 438 439 440 441 442
    The probability mass function (pmf) is:

    .. math::

        pmf(k; p_i) = \prod_{i=1}^{k} p_i^{[x=i]}

    In the above equation:

    * :math:`[x=i]` : it evaluates to 1 if :math:`x==i` , 0 otherwise.

443
    Args:
444
        logits(list|numpy.ndarray|Variable): The logits input of categorical distribution. The data type is float32.
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459

    Examples:
        .. code-block:: python

          import numpy as np
          from paddle.fluid import layers
          from paddle.fluid.layers import Categorical

          a_logits_npdata = np.array([-0.602,-0.602], dtype="float32")
          a_logits_tensor = layers.create_tensor(dtype="float32")
          layers.assign(a_logits_npdata, a_logits_tensor)

          b_logits_npdata = np.array([-0.102,-0.112], dtype="float32")
          b_logits_tensor = layers.create_tensor(dtype="float32")
          layers.assign(b_logits_npdata, b_logits_tensor)
460

461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
          a = Categorical(a_logits_tensor)
          b = Categorical(b_logits_tensor)

          a.entropy()
          # [0.6931472] with shape: [1]

          b.entropy()
          # [0.6931347] with shape: [1]

          a.kl_divergence(b)
          # [1.2516975e-05] with shape: [1]

    """

    def __init__(self, logits):
        """
        Args:
478
            logits(list|numpy.ndarray|Variable): The logits input of categorical distribution. The data type is float32.
479
        """
480 481 482
        check_type(logits, 'logits', (np.ndarray, tensor.Variable, list),
                   'Categorical')

483 484 485 486 487 488 489 490 491
        if self._validate_args(logits):
            self.logits = logits
        else:
            self.logits = self._to_variable(logits)[0]

    def kl_divergence(self, other):
        """The KL-divergence between two Categorical distributions.

        Args:
492
            other (Categorical): instance of Categorical. The data type is float32.
493 494 495 496 497

        Returns:
            Variable: kl-divergence between two Categorical distributions.

        """
498
        check_type(other, 'other', Categorical, 'kl_divergence')
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518

        logits = self.logits - nn.reduce_max(self.logits, dim=-1, keep_dim=True)
        other_logits = other.logits - nn.reduce_max(
            other.logits, dim=-1, keep_dim=True)
        e_logits = ops.exp(logits)
        other_e_logits = ops.exp(other_logits)
        z = nn.reduce_sum(e_logits, dim=-1, keep_dim=True)
        other_z = nn.reduce_sum(other_e_logits, dim=-1, keep_dim=True)
        prob = e_logits / z
        kl = nn.reduce_sum(
            prob * (logits - nn.log(z) - other_logits + nn.log(other_z)),
            dim=-1,
            keep_dim=True)

        return kl

    def entropy(self):
        """Shannon entropy in nats.

        Returns:
519
          Variable: Shannon entropy of Categorical distribution. The data type is float32.
520 521 522 523 524 525 526 527 528 529 530 531 532

        """
        logits = self.logits - nn.reduce_max(self.logits, dim=-1, keep_dim=True)
        e_logits = ops.exp(logits)
        z = nn.reduce_sum(e_logits, dim=-1, keep_dim=True)
        prob = e_logits / z
        entropy = -1.0 * nn.reduce_sum(
            prob * (logits - nn.log(z)), dim=-1, keep_dim=True)

        return entropy


class MultivariateNormalDiag(Distribution):
533
    r"""
534 535 536
    A multivariate normal (also called Gaussian) distribution parameterized by a mean vector
    and a covariance matrix.

537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
    The probability density function (pdf) is:

    .. math::

        pdf(x; loc, scale) = \\frac{e^{-\\frac{||y||^2}{2}}}{Z}

    where:
    .. math::

        y = inv(scale) @ (x - loc)
        Z = (2\\pi)^{0.5k} |det(scale)|


    In the above equation:

    * :math:`inv` : denotes to take the inverse of the matrix.
    * :math:`@` : denotes matrix multiplication.
    * :math:`det` : denotes to evaluate the determinant.

556
    Args:
557 558 559 560 561
        loc(list|numpy.ndarray|Variable): The mean of multivariateNormal distribution with shape :math:`[k]` .
            The data type is float32.
        scale(list|numpy.ndarray|Variable): The positive definite diagonal covariance matrix of multivariateNormal
            distribution  with shape :math:`[k, k]` . All elements are 0 except diagonal elements. The data type is
            float32.
562 563 564

    Examples:
        .. code-block:: python
565

566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
            import numpy as np
            from paddle.fluid import layers
            from paddle.fluid.layers import MultivariateNormalDiag

            a_loc_npdata = np.array([0.3,0.5],dtype="float32")
            a_loc_tensor = layers.create_tensor(dtype="float32")
            layers.assign(a_loc_npdata, a_loc_tensor)


            a_scale_npdata = np.array([[0.4,0],[0,0.5]],dtype="float32")
            a_scale_tensor = layers.create_tensor(dtype="float32")
            layers.assign(a_scale_npdata, a_scale_tensor)

            b_loc_npdata = np.array([0.2,0.4],dtype="float32")
            b_loc_tensor = layers.create_tensor(dtype="float32")
            layers.assign(b_loc_npdata, b_loc_tensor)

            b_scale_npdata = np.array([[0.3,0],[0,0.4]],dtype="float32")
            b_scale_tensor = layers.create_tensor(dtype="float32")
            layers.assign(b_scale_npdata, b_scale_tensor)

            a = MultivariateNormalDiag(a_loc_tensor, a_scale_tensor)
            b = MultivariateNormalDiag(b_loc_tensor, b_scale_tensor)
589

590 591 592
            a.entropy()
            # [2.033158] with shape: [1]
            b.entropy()
T
tianshuo78520a 已提交
593
            # [1.7777451] with shape: [1]
594 595 596

            a.kl_divergence(b)
            # [0.06542051] with shape: [1]
597

598 599 600
    """

    def __init__(self, loc, scale):
601 602 603 604 605
        check_type(loc, 'loc', (np.ndarray, tensor.Variable, list),
                   'MultivariateNormalDiag')
        check_type(scale, 'scale', (np.ndarray, tensor.Variable, list),
                   'MultivariateNormalDiag')

606 607 608 609 610 611 612 613 614 615 616
        if self._validate_args(loc, scale):
            self.loc = loc
            self.scale = scale
        else:
            self.loc, self.scale = self._to_variable(loc, scale)

    def _det(self, value):

        batch_shape = list(value.shape)
        one_all = tensor.ones(shape=batch_shape, dtype=self.loc.dtype)
        one_diag = tensor.diag(
617
            tensor.ones(shape=[batch_shape[0]], dtype=self.loc.dtype))
618 619 620 621 622 623 624 625 626
        det_diag = nn.reduce_prod(value + one_all - one_diag)

        return det_diag

    def _inv(self, value):

        batch_shape = list(value.shape)
        one_all = tensor.ones(shape=batch_shape, dtype=self.loc.dtype)
        one_diag = tensor.diag(
627
            tensor.ones(shape=[batch_shape[0]], dtype=self.loc.dtype))
628 629 630 631 632 633 634 635
        inv_diag = nn.elementwise_pow(value, (one_all - 2 * one_diag))

        return inv_diag

    def entropy(self):
        """Shannon entropy in nats.

        Returns:
636
          Variable: Shannon entropy of Multivariate Normal distribution. The data type is float32.
637 638

        """
639 640
        entropy = 0.5 * (self.scale.shape[0] * (1.0 + math.log(2 * math.pi)) +
                         nn.log(self._det(self.scale)))
641 642 643 644 645 646 647 648 649 650

        return entropy

    def kl_divergence(self, other):
        """The KL-divergence between two Multivariate Normal distributions.

        Args:
            other (MultivariateNormalDiag): instance of Multivariate Normal.

        Returns:
651
            Variable: kl-divergence between two Multivariate Normal distributions. The data type is float32.
652 653

        """
654
        check_type(other, 'other', MultivariateNormalDiag, 'kl_divergence')
655 656 657 658 659 660 661 662 663 664

        tr_cov_matmul = nn.reduce_sum(self._inv(other.scale) * self.scale)
        loc_matmul_cov = nn.matmul((other.loc - self.loc),
                                   self._inv(other.scale))
        tri_matmul = nn.matmul(loc_matmul_cov, (other.loc - self.loc))
        k = list(self.scale.shape)[0]
        ln_cov = nn.log(self._det(other.scale)) - nn.log(self._det(self.scale))
        kl = 0.5 * (tr_cov_matmul + tri_matmul - k + ln_cov)

        return kl