test_dist_fleet_base.py 16.2 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
16
from paddle.distributed.fleet.utils.ps_util import DistributedInfer
17 18 19 20
from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy import StrategyFactory
import paddle.distributed.fleet as fleet
import paddle.distributed.fleet.base.role_maker as role_maker
import paddle.fluid as fluid
21 22 23
"""
    high level unit test for distribute fleet.
"""
24

T
tangwei12 已提交
25 26
import os
import sys
27
import subprocess
T
tangwei12 已提交
28

29 30 31
import six
import shutil
import numpy as np
32 33 34 35
import argparse
from contextlib import closing
import socket
import time
36
import tempfile
37
import unittest
T
tangwei12 已提交
38

39
import paddle
T
tangwei12 已提交
40 41
paddle.enable_static()

C
Chengmo 已提交
42 43
__all__ = ['FleetDistRunnerBase', 'TestFleetBase', 'runtime_main']

T
tangwei12 已提交
44 45
RUN_STEP = 5
LEARNING_RATE = 0.01
46
DIST_UT_PORT = 0
T
tangwei12 已提交
47 48 49


class FleetDistRunnerBase(object):
50 51 52 53 54 55
    """
        run_pserver,run_trainer : after init role, using transpiler split program
        net : implment by child class, the network of model
        do training : exe run program
    """

56 57 58
    def __init__(self):
        self._exe = None

59
    def build_role(self, args):
60

61 62
        if args.role.upper() == "PSERVER":
            role = role_maker.UserDefinedRoleMaker(
63
                is_collective=False,
64
                init_gloo=False,
65
                path=args.gloo_path,
66 67
                current_id=args.current_id,
                role=role_maker.Role.SERVER,
68
                worker_endpoints=args.trainer_endpoints.split(","),
69 70 71
                server_endpoints=args.endpoints.split(","))
        else:
            role = role_maker.UserDefinedRoleMaker(
72
                is_collective=False,
73
                init_gloo=False,
74
                path=args.gloo_path,
75 76
                current_id=args.current_id,
                role=role_maker.Role.WORKER,
77
                worker_endpoints=args.trainer_endpoints.split(","),
78
                server_endpoints=args.endpoints.split(","))
79
        self.role = role
80 81 82
        return role

    def build_strategy(self, args):
83 84 85 86
        if args.mode == "sync":
            self.strategy = paddle.distributed.fleet.DistributedStrategy()
            self.strategy.a_sync = False
        elif args.mode == "async":
87 88
            self.strategy = paddle.distributed.fleet.DistributedStrategy()
            self.strategy.a_sync = True
1
123malin 已提交
89
        elif args.mode == "geo":
90 91 92 93 94
            self.strategy = paddle.distributed.fleet.DistributedStrategy()
            self.strategy.a_sync = True
            self.strategy.a_sync_configs = {
                "k_steps": args.geo_sgd_need_push_nums
            }
95 96 97 98
        elif args.mode == "auto":
            self.strategy = paddle.distributed.fleet.DistributedStrategy()
            self.strategy.auto = True

99 100 101 102
        self.dump_param = os.getenv("dump_param", "").split(",")
        self.dump_fields = os.getenv("dump_fields", "").split(",")
        self.dump_fields_path = os.getenv("dump_fields_path", "")
        debug = int(os.getenv("Debug", "0"))
103
        # TODO(update strategy to support dump params)
104
        if False:  # debug:
105 106 107 108 109 110
            self.strategy.set_debug_opt({
                "dump_param": self.dump_param,
                "dump_fields": self.dump_fields,
                "dump_fields_path": self.dump_fields_path
            })

1
123malin 已提交
111 112
        return self.strategy

113
    def build_optimizer(self, avg_cost, strategy):
C
Chengmo 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126
        use_grad_clip = int(os.getenv('GRAD_CLIP', 0))
        if use_grad_clip:
            # 1: clip_by_value; 2: clip_by_norm; 3:clip_by_global_norm
            if use_grad_clip == 1:
                fluid.clip.set_gradient_clip(
                    clip=fluid.clip.GradientClipByValue(2.0))
            elif use_grad_clip == 2:
                fluid.clip.set_gradient_clip(
                    clip=fluid.clip.GradientClipByNorm(2.0))
            elif use_grad_clip == 3:
                fluid.clip.set_gradient_clip(
                    clip=fluid.clip.GradientClipByGlobalNorm(2.0))

127
        use_decay = int(os.getenv("USE_DECAY", "0"))
128
        if use_decay:
129 130 131 132 133
            scheduler = paddle.optimizer.lr.ExponentialDecay(
                learning_rate=LEARNING_RATE, gamma=0.999, verbose=True)
            optimizer = fluid.optimizer.SGD(scheduler)
            """
            # learning rate decay method before 2.0
134 135 136 137 138
            optimizer = fluid.optimizer.SGD(
                learning_rate=fluid.layers.exponential_decay(
                    learning_rate=LEARNING_RATE,
                    decay_steps=500,
                    decay_rate=0.969,
139 140
                    staircase=True)) 
            """
141 142
        else:
            optimizer = fluid.optimizer.SGD(LEARNING_RATE)
143
        optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
T
tangwei12 已提交
144 145
        optimizer.minimize(avg_cost)

146
    def run_pserver(self, args):
T
tangwei12 已提交
147 148 149
        fleet.init_server()
        fleet.run_server()

1
123malin 已提交
150 151 152 153 154
    def run_dataset_trainer(self, args):
        out = self.do_dataset_training(fleet)

    def run_pyreader_trainer(self, args):
        out = self.do_pyreader_training(fleet)
T
tangwei12 已提交
155

156
    def net(self, args, batch_size=4, lr=0.01):
T
tangwei12 已提交
157 158 159
        raise NotImplementedError(
            "get_model should be implemented by child classes.")

160 161 162 163 164 165 166 167 168 169
    def get_executor(self):
        if self._exe is None:
            device_env = os.getenv("DEVICE", 'cpu')
            if device_env == 'cpu':
                device = fluid.CPUPlace()
            elif device_env == 'gpu':
                device = fluid.CUDAPlace(0)
            self._exe = fluid.Executor(device)
        return self._exe

1
123malin 已提交
170
    def do_dataset_training(self, fleet):
T
tangwei12 已提交
171
        raise NotImplementedError(
1
123malin 已提交
172 173 174 175 176
            "do_dataset_training should be implemented by child classes.")

    def do_pyreader_training(self, fleet):
        raise NotImplementedError(
            "do_pyreader_training should be implemented by child classes.")
T
tangwei12 已提交
177

T
tangwei12 已提交
178 179 180 181
    def do_distributed_testing(self, fleet):
        raise NotImplementedError(
            "do_distributed_testing should be implemented by child classes.")

T
tangwei12 已提交
182 183

class TestFleetBase(unittest.TestCase):
184 185 186 187 188
    """
        start_pserver,start_trainer : add start cmd to test
        run_cluster : using multi process to test distribute program
    """

T
tangwei12 已提交
189 190 191
    def _setup_config(self):
        raise NotImplementedError("tests should have _setup_config implemented")

192 193 194 195
    def tearDown(self):
        t = time.time() - self.startTime
        print('%s: %.3f' % (self.__class__.__name__, t))

T
tangwei12 已提交
196
    def setUp(self):
197 198
        self.startTime = time.time()

1
123malin 已提交
199 200
        self._mode = "sync"
        self._reader = "pyreader"
T
tangwei12 已提交
201 202
        self._trainers = 2
        self._pservers = 2
T
tangwei12 已提交
203
        self._need_test = 0
204
        self._model_dir = ""
T
tangwei12 已提交
205
        self._port_set = set()
206 207 208 209 210 211 212 213 214

        global DIST_UT_PORT
        if DIST_UT_PORT == 0 and os.getenv("PADDLE_DIST_UT_PORT"):
            DIST_UT_PORT = int(os.getenv("PADDLE_DIST_UT_PORT"))

        if DIST_UT_PORT:
            print("set begin_port:", DIST_UT_PORT)
            self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
                DIST_UT_PORT, DIST_UT_PORT + 1)
215 216 217
            self._tr_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
                DIST_UT_PORT + 2, DIST_UT_PORT + 3)
            DIST_UT_PORT += 4
218 219 220
        else:
            self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
                self._find_free_port(), self._find_free_port())
221 222
            self._tr_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
                self._find_free_port(), self._find_free_port())
223

T
tangwei12 已提交
224
        self._python_interp = sys.executable
225
        self._geo_sgd_need_push_nums = 5
C
Chengmo 已提交
226
        self._grad_clip_mode = 0
T
tangwei12 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
        self._setup_config()

    def _find_free_port(self):
        def __free_port():
            with closing(socket.socket(socket.AF_INET,
                                       socket.SOCK_STREAM)) as s:
                s.bind(('', 0))
                return s.getsockname()[1]

        while True:
            port = __free_port()
            if port not in self._port_set:
                self._port_set.add(port)
                return port

    def _start_pserver(self, cmd, required_envs):
        ps0_cmd, ps1_cmd = cmd.format(0), cmd.format(1)

245 246
        ps0_pipe = open(tempfile.gettempdir() + "/ps0_err.log", "wb+")
        ps1_pipe = open(tempfile.gettempdir() + "/ps1_err.log", "wb+")
T
tangwei12 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262

        ps0_proc = subprocess.Popen(
            ps0_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=ps0_pipe,
            env=required_envs)
        ps1_proc = subprocess.Popen(
            ps1_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=ps1_pipe,
            env=required_envs)
        return ps0_proc, ps1_proc, ps0_pipe, ps1_pipe

    def _start_trainer(self, cmd, required_envs):
        tr0_cmd, tr1_cmd = cmd.format(0), cmd.format(1)

263 264
        tr0_pipe = open(tempfile.gettempdir() + "/tr0_err.log", "wb+")
        tr1_pipe = open(tempfile.gettempdir() + "/tr1_err.log", "wb+")
T
tangwei12 已提交
265

266 267 268
        tr0_out = open(tempfile.gettempdir() + "/tr0_stdout.log", "wb+")
        tr1_out = open(tempfile.gettempdir() + "/tr1_stdout.log", "wb+")

T
tangwei12 已提交
269 270
        tr0_proc = subprocess.Popen(
            tr0_cmd.strip().split(" "),
271
            stdout=tr0_out,
T
tangwei12 已提交
272 273 274 275
            stderr=tr0_pipe,
            env=required_envs)
        tr1_proc = subprocess.Popen(
            tr1_cmd.strip().split(" "),
276
            stdout=tr1_out,
T
tangwei12 已提交
277 278 279 280 281 282
            stderr=tr1_pipe,
            env=required_envs)

        return tr0_proc, tr1_proc, tr0_pipe, tr1_pipe

    def _run_cluster(self, model, envs):
283
        env = {'GRAD_CLIP': str(self._grad_clip_mode)}
284
        python_path = self._python_interp
285 286
        gloo_path = tempfile.mkdtemp()

287 288 289
        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            python_path += " -m coverage run --branch -p"
290
        env.update(envs)
T
tangwei12 已提交
291

T
tangwei12 已提交
292
        tr_cmd = "{0} {1} --role trainer --endpoints {2} --trainer_endpoints {3} --current_id {{}} --trainers {4} --mode {5} --geo_sgd_need_push_nums {6} --reader {7} --gloo_path {8} --test {9}".format(
293 294
            python_path, model, self._ps_endpoints, self._tr_endpoints,
            self._trainers, self._mode, self._geo_sgd_need_push_nums,
T
tangwei12 已提交
295
            self._reader, gloo_path, self._need_test)
T
tangwei12 已提交
296

T
tangwei12 已提交
297
        ps_cmd = "{0} {1} --role pserver --endpoints {2} --trainer_endpoints {3} --current_id {{}} --trainers {4} --mode {5} --geo_sgd_need_push_nums {6} --reader {7} --gloo_path {8} --test {9}".format(
298 299
            python_path, model, self._ps_endpoints, self._tr_endpoints,
            self._trainers, self._mode, self._geo_sgd_need_push_nums,
T
tangwei12 已提交
300
            self._reader, gloo_path, self._need_test)
301

302 303 304 305
        if self._model_dir:
            tr_cmd += " --model_dir {}".format(self._model_dir)
            ps_cmd += " --model_dir {}".format(self._model_dir)

T
tangwei12 已提交
306 307 308 309 310 311 312 313 314 315
        # Run dist train to compare with local results
        ps0, ps1, ps0_pipe, ps1_pipe = self._start_pserver(ps_cmd, env)
        tr0, tr1, tr0_pipe, tr1_pipe = self._start_trainer(tr_cmd, env)

        # Wait until trainer process terminate
        while True:
            stat0 = tr0.poll()
            time.sleep(0.1)
            if stat0 is not None:
                break
316

T
tangwei12 已提交
317 318 319 320 321 322 323 324 325
        while True:
            stat1 = tr1.poll()
            time.sleep(0.1)
            if stat1 is not None:
                break

        tr0_out, tr0_err = tr0.communicate()
        tr1_out, tr1_err = tr1.communicate()

326 327
        tr0_ret = tr0.returncode
        tr1_ret = tr0.returncode
C
Chengmo 已提交
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
        if tr0_ret != 0:
            print(
                "========================Error tr0_err begin==========================="
            )
            os.system("cat {}".format(tempfile.gettempdir() + "/tr0_err.log"))
            print(
                "========================Error tr0_err end==========================="
            )

        if tr1_ret != 0:
            print(
                "========================Error tr1_err begin==========================="
            )
            os.system("cat {}".format(tempfile.gettempdir() + "/tr1_err.log"))
            print(
                "========================Error tr1_err end==========================="
            )
345

T
tangwei12 已提交
346 347 348 349 350 351 352 353 354
        # close trainer file
        tr0_pipe.close()
        tr1_pipe.close()
        ps0_pipe.close()
        ps1_pipe.close()

        ps0.terminate()
        ps1.terminate()

355
        shutil.rmtree(gloo_path)
C
Chengmo 已提交
356 357
        self.assertEqual(tr0_ret, 0, "something wrong in tr0, please check")
        self.assertEqual(tr1_ret, 0, "something wrong in tr1, please check")
T
tangwei12 已提交
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
        return 0, 0

    def check_with_place(self,
                         model_file,
                         delta=1e-3,
                         check_error_log=False,
                         need_envs={}):
        required_envs = {
            "PATH": os.getenv("PATH", ""),
            "PYTHONPATH": os.getenv("PYTHONPATH", ""),
            "LD_LIBRARY_PATH": os.getenv("LD_LIBRARY_PATH", ""),
            "FLAGS_rpc_deadline": "5000",  # 5sec to fail fast
            "http_proxy": ""
        }

        required_envs.update(need_envs)

        if check_error_log:
            required_envs["GLOG_v"] = "3"
            required_envs["GLOG_logtostderr"] = "1"

        tr0_losses, tr1_losses = self._run_cluster(model_file, required_envs)


def runtime_main(test_class):
    parser = argparse.ArgumentParser(description='Run Fleet test.')
    parser.add_argument(
        '--role', type=str, required=True, choices=['pserver', 'trainer'])
    parser.add_argument('--endpoints', type=str, required=False, default="")
387 388 389
    parser.add_argument(
        '--trainer_endpoints', type=str, required=False, default="")
    parser.add_argument('--gloo_path', type=str, required=False, default="")
T
tangwei12 已提交
390 391
    parser.add_argument('--current_id', type=int, required=False, default=0)
    parser.add_argument('--trainers', type=int, required=False, default=1)
1
123malin 已提交
392
    parser.add_argument('--mode', type=str, required=False, default='geo')
393 394
    parser.add_argument(
        '--geo_sgd_need_push_nums', type=int, required=False, default=2)
1
123malin 已提交
395
    parser.add_argument('--reader', type=str, required=False, default='dataset')
T
tangwei12 已提交
396
    parser.add_argument('--test', type=int, required=False, default=0)
397
    parser.add_argument('--model_dir', type=str, required=False, default="")
T
tangwei12 已提交
398 399 400
    args = parser.parse_args()

    model = test_class()
401
    role = model.build_role(args)
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417

    if args.test and args.model_dir != "":
        avg_cost = model.net(args, is_train=False)
        dist_infer = DistributedInfer()
        dist_infer.init_distributed_infer_env(
            exe=model.get_executor(),
            loss=model.avg_cost,
            role_maker=role,
            dirname=args.model_dir)
        if fleet.is_worker():
            with paddle.static.program_guard(
                    main_program=dist_infer.get_dist_infer_program()):
                model.do_distributed_testing(fleet)
                fleet.stop_worker()
                return

418 419 420 421
    fleet.init(role)
    strategy = model.build_strategy(args)
    avg_cost = model.net(args)
    model.build_optimizer(avg_cost, strategy)
422

T
tangwei12 已提交
423 424 425
    if args.role == "pserver":
        model.run_pserver(args)
    else:
1
123malin 已提交
426 427 428 429
        if args.reader == "dataset":
            model.run_dataset_trainer(args)
        else:
            model.run_pyreader_trainer(args)
T
tangwei12 已提交
430 431

        if args.test:
432 433 434
            test_origin_program = paddle.static.Program()
            test_startup_program = paddle.static.Program()
            with paddle.static.program_guard(
T
tangwei12 已提交
435 436
                    main_program=test_origin_program,
                    startup_program=test_startup_program):
437
                with paddle.utils.unique_name.guard():
T
tangwei12 已提交
438
                    avg_cost = model.net(args, is_train=False)
439 440 441 442 443 444
            dist_infer = DistributedInfer(
                main_program=test_origin_program,
                startup_program=test_startup_program)
            with paddle.static.program_guard(
                    main_program=dist_infer.get_dist_infer_program()):
                model.do_distributed_testing(fleet)
T
tangwei12 已提交
445
        fleet.stop_worker()