layer.py 15.5 KB
Newer Older
Q
qiaolongfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
"""
Before this new package paddle.v2.layer, users would need to use functions
in paddle.trainer_config_helpers.layers to configure networks.

The Old Way:
=========
This old way requires that the creation of a network be defined in a Python
function, say network_config, and that this Python function being passed to
paddle.trainer_config_helpers.parse_network_config for the creation of
protobuf message description of this network.

```python
def network_config():
  img = paddle.trainer_config_helpers.data_layer(name="pixel", size=784)
  inference = paddle.trainer_config_helpers.fc_layer(
    input=img,
    size=10,
    act=paddle.trainer_config_helpers.SoftmaxActivation())
  cost = paddle.trainer_config_helpers.classification_cost(
    input=inference,
    label=paddle.trainer_config_helpers.data_layer(name="label", size=10))

proto_desc = parse_network_config(network_config)
```

When parse_network_config executes network_config, those layer definition
functions like data_layer and fc_layer would change some Python global variables,
so that after the execution, parse_network_config could collect information from
these global variables and generates the protobuf message.



The New Way:
=========
In this PR, we define a function in paddle.v2.layer which creates a Python
class for each layer creation function in paddle.trainer_config_helpers.layers.
Users can use create a network as follows:

```python
img = paddle.v2.layer.data(name="pixel", size=784)
inference = paddle.v2.layer.fc(input=img, size=10, act=paddle.v2.layer.Softmax())
cost = paddle.v2.layer.classification(
  input=inference,
  label=paddle.v2.layer.data(name="label", size=10))

parameters = paddle.v2.parameters.create(cost)
```

This new way doesn't require those invocations to layer definition functions
to be in a Python function but could be anywhere.

Also, the creation of a protobuf message is hidden in the invocation of
paddle.v2.parameters.create, no longer exposed to users.
"""
Q
qiaolongfei 已提交
68

Q
qiaolongfei 已提交
69 70
import collections

Q
qiaolongfei 已提交
71 72 73
import paddle.trainer_config_helpers as conf_helps
from paddle.trainer_config_helpers.config_parser_utils import \
    parse_network_config as __parse__
74
from paddle.trainer_config_helpers.default_decorators import wrap_act_default
Y
Yu Yang 已提交
75 76
from paddle.trainer_config_helpers.default_decorators import \
    wrap_bias_attr_default
Q
qiaolongfei 已提交
77
from paddle.trainer_config_helpers.default_decorators import wrap_name_default
78
from paddle.trainer_config_helpers.layers import layer_support
79 80 81
from paddle.trainer.config_parser import \
    RecurrentLayerGroupWithoutOutLinksBegin, RecurrentLayerGroupSetOutLink, \
    RecurrentLayerGroupEnd, model_type
Q
qiaolongfei 已提交
82

L
Luo Tao 已提交
83
import activation
Q
qiaolongfei 已提交
84
import data_type
Q
qiaolongfei 已提交
85

Y
Yu Yang 已提交
86
__all__ = ['parse_network', 'data']
Q
qiaolongfei 已提交
87

D
dangqingqing 已提交
88 89 90 91 92 93 94
__projection_names__ = filter(lambda x: x.endswith('_projection'),
                              dir(conf_helps))
__all__ += __projection_names__

__operator_names__ = filter(lambda x: x.endswith('_operator'), dir(conf_helps))
__all__ += __operator_names__

Q
qiaolongfei 已提交
95

Q
qiaolongfei 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
def parse_network(*outputs):
    """
    parse all output layers and then generate a model config proto.
    :param outputs:
    :return:
    """

    def __real_func__():
        context = dict()
        real_output = [each.to_proto(context=context) for each in outputs]
        conf_helps.outputs(real_output)

    return __parse__(__real_func__)


Q
qiaolongfei 已提交
111
class Layer(object):
112
    def __init__(self, name=None, parent_layers=None):
Q
qiaolongfei 已提交
113
        assert isinstance(parent_layers, dict)
Q
qiaolongfei 已提交
114
        self.name = name
Q
qiaolongfei 已提交
115
        self.__parent_layers__ = parent_layers
Q
qiaolongfei 已提交
116 117 118 119 120 121

    def to_proto(self, context):
        """
        function to set proto attribute
        """
        kwargs = dict()
Q
qiaolongfei 已提交
122 123
        for layer_name in self.__parent_layers__:
            if not isinstance(self.__parent_layers__[layer_name],
Q
qiaolongfei 已提交
124
                              collections.Sequence):
Q
qiaolongfei 已提交
125
                v1_layer = self.__parent_layers__[layer_name].to_proto(
Q
qiaolongfei 已提交
126 127
                    context=context)
            else:
Q
qiaolongfei 已提交
128 129 130
                v1_layer = map(lambda x: x.to_proto(context=context),
                               self.__parent_layers__[layer_name])
            kwargs[layer_name] = v1_layer
Q
qiaolongfei 已提交
131

132
        if self.context_name() is None:
133
            return self.to_proto_impl(**kwargs)
134
        elif isinstance(self, MemoryV2):
Q
qiaolongfei 已提交
135 136 137 138
            name = self.name + "#__memory__"
            if name not in context:
                context[name] = self.to_proto_impl(**kwargs)
            return context[name]
139 140
        elif self.context_name() not in context:
            context[self.context_name()] = self.to_proto_impl(**kwargs)
Q
qiaolongfei 已提交
141 142 143 144 145
        return context[self.name]

    def to_proto_impl(self, **kwargs):
        raise NotImplementedError()

146 147 148 149 150 151 152 153
    def context_name(self):
        """
        Context name means the context which stores `to_proto_impl` result.
        If multiple layer share same context_name, the `to_proto_impl` of them
        will be invoked only once.
        """
        return self.name

Q
qiaolongfei 已提交
154

L
Luo Tao 已提交
155 156 157
def __convert_to_v2__(method_name, parent_names, is_default_name=True):
    if is_default_name:
        wrapper = wrap_name_default(name_prefix=method_name)
Q
qiaolongfei 已提交
158 159 160
    else:
        wrapper = None

Q
qiaolongfei 已提交
161
    class V2LayerImpl(Layer):
D
dangqingqing 已提交
162
        def __init__(self, **kwargs):
Q
qiaolongfei 已提交
163 164 165
            parent_layers = dict()
            other_kwargs = dict()
            for pname in parent_names:
L
Luo Tao 已提交
166 167
                if kwargs.has_key(pname):
                    parent_layers[pname] = kwargs[pname]
Q
qiaolongfei 已提交
168 169 170 171 172

            for key in kwargs.keys():
                if key not in parent_names:
                    other_kwargs[key] = kwargs[key]

D
dangqingqing 已提交
173
            name = kwargs.get('name', None)
174
            super(V2LayerImpl, self).__init__(name, parent_layers)
Q
qiaolongfei 已提交
175 176 177 178 179 180 181 182 183 184 185
            self.__other_kwargs__ = other_kwargs

        if wrapper is not None:
            __init__ = wrapper(__init__)

        def to_proto_impl(self, **kwargs):
            args = dict()
            for each in kwargs:
                args[each] = kwargs[each]
            for each in self.__other_kwargs__:
                args[each] = self.__other_kwargs__[each]
186
            return getattr(conf_helps, method_name)(**args)
Q
qiaolongfei 已提交
187

Q
qiaolongfei 已提交
188
    return V2LayerImpl
Q
qiaolongfei 已提交
189 190


Q
qiaolongfei 已提交
191 192 193 194 195 196 197
"""
Some layer may need some special config, and can not use __convert_to_v2__ to convert.
So we also need to implement some special LayerV2.
"""


class DataLayerV2(Layer):
Q
qiaolongfei 已提交
198
    def __init__(self, name, type, **kwargs):
199
        assert isinstance(type, data_type.InputType)
Q
qiaolongfei 已提交
200

Q
qiaolongfei 已提交
201
        self.type = type
Q
qiaolongfei 已提交
202 203
        self.__method_name__ = 'data_layer'
        self.__kwargs__ = kwargs
Q
qiaolongfei 已提交
204 205 206 207 208

        super(DataLayerV2, self).__init__(name=name, parent_layers=dict())

    def to_proto_impl(self, **kwargs):
        args = dict()
Q
qiaolongfei 已提交
209
        args['size'] = self.type.dim
Q
qiaolongfei 已提交
210 211
        for each in kwargs:
            args[each] = kwargs[each]
Q
qiaolongfei 已提交
212 213
        for each in self.__kwargs__:
            args[each] = self.__kwargs__[each]
Q
qiaolongfei 已提交
214 215 216
        return getattr(conf_helps, self.__method_name__)(name=self.name, **args)


Q
qiaolongfei 已提交
217 218 219 220
class MemoryV2(Layer):
    def __init__(self, name, size, **kwargs):
        self.name = name
        self.size = size
Q
qiaolongfei 已提交
221 222 223 224 225 226 227 228 229 230 231 232 233

        parent_names = ['boot_layer']
        parent_layers = dict()
        other_kwargs = dict()
        for pname in parent_names:
            if kwargs.has_key(pname):
                parent_layers[pname] = kwargs[pname]

        for key in kwargs.keys():
            if key not in parent_names:
                other_kwargs[key] = kwargs[key]
        super(MemoryV2, self).__init__(name=name, parent_layers=parent_layers)
        self.__kwargs__ = other_kwargs
Q
qiaolongfei 已提交
234 235 236 237 238 239 240

    def to_proto_impl(self, **kwargs):
        args = dict()
        for each in kwargs:
            args[each] = kwargs[each]
        for each in self.__kwargs__:
            args[each] = self.__kwargs__[each]
Q
qiaolongfei 已提交
241

Q
qiaolongfei 已提交
242 243
        return conf_helps.memory(name=self.name, size=self.size, **args)

244 245 246
    def context_name(self):
        return self.name + "#memory"

Q
qiaolongfei 已提交
247

248
class LayerOutputV2(Layer):
Q
qiaolongfei 已提交
249 250 251 252 253
    """
    LayerOutputV2 is used to store the result of LayerOutput in v1 api.
    It will not store it's parents because layer_output has been parsed already.
    """

254 255 256 257 258 259 260 261 262 263
    def __init__(self, layer_output):
        assert isinstance(layer_output, conf_helps.LayerOutput)
        self.layer_output = layer_output
        super(LayerOutputV2, self).__init__(
            name=layer_output.name, parent_layers=dict())

    def to_proto_impl(self):
        return self.layer_output


Q
qiaolongfei 已提交
264
class StaticInputV2(Layer):
265 266 267 268 269
    def __init__(self, input=None, **kwargs):
        assert input is not None
        self.__kwargs__ = kwargs
        super(StaticInputV2, self).__init__(
            name=input.name, parent_layers={'input': input})
270

271 272
    def context_name(self):
        return self.name + "#static_input"
Q
qiaolongfei 已提交
273

274 275
    def to_proto_impl(self, **kwargs):
        args = dict()
276 277 278
        args.update(kwargs)
        args.update(self.__kwargs__)
        return conf_helps.StaticInput(**args)
279 280


281 282 283 284 285 286 287 288 289 290
class MixedLayerV2(Layer):
    """
    This class is use to support `with` grammar. If not, the following code
    could convert mixed_layer simply.

        mixed = __convert_to_v2__(
            'mixed_layer', name_prefix='mixed', parent_names=['input'])
    """

    class AddToSealedMixedLayerExceptionV2(Exception):
D
dangqingqing 已提交
291
        pass
292 293 294 295 296 297 298 299 300 301

    def __init__(self,
                 size=0,
                 input=None,
                 name=None,
                 act=None,
                 bias_attr=None,
                 layer_attr=None):
        self.__method_name__ = 'mixed_layer'
        self.finalized = False
D
dangqingqing 已提交
302
        self.__inputs__ = []
303
        if input is not None:
D
dangqingqing 已提交
304
            self.__inputs__ = input
305

D
dangqingqing 已提交
306 307
        other_kwargs = dict()
        other_kwargs['name'] = name
308 309 310 311 312
        other_kwargs['size'] = size
        other_kwargs['act'] = act
        other_kwargs['bias_attr'] = bias_attr
        other_kwargs['layer_attr'] = layer_attr

D
dangqingqing 已提交
313 314
        parent_layers = {"input": self.__inputs__}
        super(MixedLayerV2, self).__init__(name, parent_layers)
315 316 317 318
        self.__other_kwargs__ = other_kwargs

    def __iadd__(self, other):
        if not self.finalized:
D
dangqingqing 已提交
319
            self.__inputs__.append(other)
320 321 322 323 324
            return self
        else:
            raise MixedLayerTypeV2.AddToSealedMixedLayerExceptionV2()

    def __enter__(self):
D
dangqingqing 已提交
325
        assert len(self.__inputs__) == 0
326 327 328 329 330 331 332 333 334 335 336
        return self

    def __exit__(self, *args, **kwargs):
        self.finalized = True

    def to_proto_impl(self, **kwargs):
        args = dict()
        for each in kwargs:
            args[each] = kwargs[each]
        for each in self.__other_kwargs__:
            args[each] = self.__other_kwargs__[each]
D
dangqingqing 已提交
337
        return getattr(conf_helps, self.__method_name__)(**args)
338 339 340


@wrap_name_default("mixed")
D
dangqingqing 已提交
341
@wrap_act_default(act=activation.Linear())
342 343 344 345 346 347 348 349 350 351 352
@wrap_bias_attr_default(has_bias=False)
@layer_support(conf_helps.layers.ERROR_CLIPPING, conf_helps.layers.DROPOUT)
def mixed(size=0,
          name=None,
          input=None,
          act=None,
          bias_attr=False,
          layer_attr=None):
    return MixedLayerV2(size, input, name, act, bias_attr, layer_attr)


353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
class RecurrentLayerInput(Layer):
    def __init__(self, recurrent_name, index, parent_layers):
        assert len(parent_layers) == 1
        self.__parents__ = parent_layers.values()[0]
        print self.__parents__, parent_layers
        super(RecurrentLayerInput, self).__init__(
            name=self.__parents__[index].name, parent_layers=parent_layers)
        self.__recurrent_name__ = recurrent_name

    def context_name(self):
        return self.__recurrent_name__ + ".begin"

    def to_proto_impl(self, **kwargs):
        model_type('recurrent_nn')
        RecurrentLayerGroupWithoutOutLinksBegin(
            name=self.__recurrent_name__,
            in_links=map(lambda x: x.name, self.__parents__))
        return self


class RecurrentLayerOutput(Layer):
    def __init__(self, recurrent_name, index, parent_layers):
        assert len(parent_layers) == 1
        self.__parents__ = parent_layers.values()[0]
        super(RecurrentLayerOutput, self).__init__(
            name=self.__parents__[index].name, parent_layers=parent_layers)
        self.__recurrent_name__ = recurrent_name

    def context_name(self):
        return self.__recurrent_name__ + ".end"

    def to_proto_impl(self, **kwargs):
        for l in self.__parents__:
            RecurrentLayerGroupSetOutLink(l.name)
        RecurrentLayerGroupEnd(name=self.__recurrent_name__)


@wrap_name_default()
def recurrent_group(step, input, name=None):
    if not isinstance(input, collections.Sequence):
        input = [input]

    actual_input = [
        RecurrentLayerInput(
            recurrent_name=name,
            index=i,
            parent_layers={'recurrent_inputs': input})
        for i in xrange(len(input))
    ]

    actual_output = step(*actual_input)

    if not isinstance(actual_output, collections.Sequence):
        actual_output = [actual_output]

    retv = [
        RecurrentLayerOutput(
            recurrent_name=name,
            index=i,
            parent_layers={'recurrent_outputs': actual_output})
        for i in xrange(len(actual_output))
    ]
    if len(retv) == 1:
        return retv[0]
    else:
        return retv


Q
qiaolongfei 已提交
421
LayerV2 = Layer
Q
qiaolongfei 已提交
422
data = DataLayerV2
L
Luo Tao 已提交
423 424
AggregateLevel = conf_helps.layers.AggregateLevel
ExpandLevel = conf_helps.layers.ExpandLevel
425
recurrent_group = recurrent_group
Q
qiaolongfei 已提交
426
memory = MemoryV2
Q
qiaolongfei 已提交
427

Y
Yu Yang 已提交
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472

def __layer_name_mapping__(inname):
    if inname in ['data_layer', 'memory', 'mixed_layer']:
        # Do Not handle these layers
        return
    elif inname == 'maxid_layer':
        return 'max_id'
    elif inname.endswith('memory') or inname.endswith(
            '_seq') or inname.endswith('_sim') or inname == 'hsigmoid':
        return inname
    elif inname in [
            'cross_entropy', 'multi_binary_label_cross_entropy',
            'cross_entropy_with_selfnorm'
    ]:
        return inname + "_cost"
    elif inname.endswith('_cost'):
        return inname
    elif inname.endswith("_layer"):
        return inname[:-len("_layer")]


def __layer_name_mapping_parent_names__(inname):
    all_args = getattr(conf_helps, inname).argspec.args
    return filter(
        lambda x: x in ['input1', 'input2','label', 'input', 'a', 'b', 'expand_as',
                        'weights', 'vectors', 'weight', 'score', 'left', 'right'],
        all_args)


def __convert_layer__(_new_name_, _old_name_, _parent_names_):
    global __all__
    __all__.append(_new_name_)
    globals()[new_name] = __convert_to_v2__(_old_name_, _parent_names_)


for each_layer_name in dir(conf_helps):
    new_name = __layer_name_mapping__(each_layer_name)
    if new_name is not None:
        parent_names = __layer_name_mapping_parent_names__(each_layer_name)
        assert len(parent_names) != 0, each_layer_name
        __convert_layer__(new_name, each_layer_name, parent_names)

del parent_names
del new_name
del each_layer_name
Q
qiaolongfei 已提交
473

474
# convert projection
D
dangqingqing 已提交
475
for prj in __projection_names__:
L
Luo Tao 已提交
476 477
    globals()[prj] = __convert_to_v2__(
        prj, parent_names=['input'], is_default_name=False)
478 479 480 481 482 483 484 485

# convert operator
operator_list = [
    # [V1_method_name, parent_names],
    ['dotmul_operator', ['a', 'b']],
    ['conv_operator', ['img', 'filter']]
]
for op in operator_list:
L
Luo Tao 已提交
486 487
    globals()[op[0]] = __convert_to_v2__(
        op[0], parent_names=op[1], is_default_name=False)