utils.py 14.3 KB
Newer Older
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import sys
16

17
import numpy as np
18 19

from ...fluid.framework import IrNode, Operator
20 21

_weight_supported_quantizable_op_type = [
22 23 24 25 26 27
    'conv2d',
    'depthwise_conv2d',
    'conv2d_transpose',
    'mul',
    'matmul',
    'matmul_v2',
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
]

_act_supported_quantizable_op_type = [
    "pool2d",
    "elementwise_add",
    "concat",
    "softmax",
    "argmax",
    "transpose",
    "equal",
    "gather",
    "greater_equal",
    "greater_than",
    "less_equal",
    "less_than",
    "mean",
    "not_equal",
    "reshape",
46
    "reshape2",
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
    "dropout",
    "bilinear_interp",
    "nearest_interp",
    "trilinear_interp",
    "slice",
    "squeeze",
    "elementwise_sub",
    "mul",
    "matmul",
    "relu",
    "relu6",
    "leaky_relu",
    "tanh",
    "swish",
    "transpose",
    "transpose2",
    "sigmoid",
    "pad2d",
    "flatten",
    "flatten2",
    "batch_norm",
    "layer_norm",
    "matmul_v2",
    "split",
    "flatten_contiguous_range",
    "squeeze2",
    "nearest_interp_v2",
    "bilinear_interp",
    "bilinear_interp_v2",
    "fill_constant_batch_size_like",
    "arg_max",
    "abs",
    "assign",
    "cast",
    "clip",
    "box_coder",
    "crop",
    "cumsum",
    "elementwise_mul",
    "elementwise_pow",
    "expand_v2",
    "fill_any_like",
    "fill_constant",
    "gelu",
    "hard_sigmoid",
    "hard_swish",
    "instance_norm",
    "lookup_table",
    "lookup_table_v2",
    "norm",
    "p_norm",
    "pad3d",
    "pow",
    "prelu",
    "reduce_mean",
    "unsqueeze",
    "unsqueeze2",
    "logical_and",
    "logical_not",
    "meshgrid",
    "roi_align",
    "strided_slice",
    "where",
    "grid_sampler",
    "tile",
    "group_norm",
    "reduce_sum",
    "square",
    "softplus",
    "shuffle_channel",
C
Chang Xu 已提交
117
    "reduce_max",
118
    "scale",
119 120
]

121
QUANT_SUPPORTED_OP_TYPE_LIST = list(
122 123 124 125 126
    set(
        _weight_supported_quantizable_op_type
        + _act_supported_quantizable_op_type
    )
)
127

128 129
_out_scale_op_list = QUANT_SUPPORTED_OP_TYPE_LIST

130
_channelwise_quant_axis1_ops = [
131 132 133 134
    'conv2d_transpose',
    'mul',
    'matmul',
    'matmul_v2',
135 136
]

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
# list op real input and output names, to avoid processing input such as AxisTensor.
_op_real_in_out_name = {
    "conv2d": [["Input", "Filter"], ["Output"]],
    "depthwise_conv2d": [["Input", "Filter"], ["Output"]],
    "conv2d_transpose": [["Input", "Filter"], ["Output"]],
    "mul": [["X", "Y"], ["Out"]],
    "matmul": [["X", "Y"], ["Out"]],
    "matmul_v2": [["X", "Y"], ["Out"]],
    "pool2d": [["X"], ["Out"]],
    "elementwise_add": [["X", "Y"], ["Out"]],
    "concat": [["X"], ["Out"]],
    "softmax": [["X"], ["Out"]],
    "argmax": [["X"], ["Out"]],
    "transpose": [["X"], ["Out"]],
    "equal": [["X", "Y"], ["Out"]],
    "gather": [["X"], ["Out"]],
    "greater_equal": [["X", "Y"], ["Out"]],
    "greater_than": [["X", "Y"], ["Out"]],
    "less_equal": [["X", "Y"], ["Out"]],
    "less_than": [["X", "Y"], ["Out"]],
    "mean": [["X"], ["Out"]],
    "not_equal": [["X", "Y"], ["Out"]],
    "reshape": [["X"], ["Out"]],
    "reshape2": [["X"], ["Out"]],
    "transpose2": [["X"], ["Out"]],
    "nearest_interp": [["X"], ["Out"]],
    "trilinear_interp": [["X"], ["Out"]],
    "slice": [["Input"], ["Out"]],
    "squeeze": [["X"], ["Out"]],
    "elementwise_sub": [["X", "Y"], ["Out"]],
    "relu": [["X"], ["Out"]],
    "relu6": [["X"], ["Out"]],
    "leaky_relu": [["X"], ["Out"]],
    "prelu": [["X", "Alpha"], ["Out"]],
    "tanh": [["X"], ["Out"]],
    "swish": [["X"], ["Out"]],
    "dropout": [["X"], ["Out"]],
    "batch_norm": [["X"], ["Y"]],
    "layer_norm": [["X"], ["Y"]],
    "sigmoid": [["X"], ["Out"]],
    "elementwise_mul": [["X", "Y"], ["Out"]],
    "elementwise_pow": [["X", "Y"], ["Out"]],
    "hard_swish": [["X"], ["Out"]],
    "hard_sigmoid": [["X"], ["Out"]],
    "gru": [["Input", "Weight"], ["Hidden"]],
    "lstm": [["Input", "Weight"], ["Hidden"]],
    "pad2d": [["X"], ["Out"]],
    "pad3d": [["X"], ["Out"]],
    "flatten": [["X"], ["Out"]],
    "flatten2": [["X"], ["Out"]],
    "unsqueeze2": [["X"], ["Out"]],
    "flatten_contiguous_range": [["X"], ["Out"]],
    "split": [["X"], ["Out"]],
    "squeeze2": [["X"], ["Out"]],
    "nearest_interp_v2": [["X"], ["Out"]],
    "bilinear_interp": [["X"], ["Out"]],
    "bilinear_interp_v2": [["X"], ["Out"]],
    "fill_constant_batch_size_like": [["Input"], ["Out"]],
    "arg_max": [["X"], ["Out"]],
    "abs": [["X"], ["Out"]],
    "assign": [["X"], ["Out"]],
    "cast": [["X"], ["Out"]],
    "clip": [["X"], ["Out"]],
    "box_coder": [["PriorBox"], ["OutputBox"]],
    "crop": [["X"], ["Out"]],
    "cumsum": [["X"], ["Out"]],
    "expand_v2": [["X"], ["Out"]],
    "fill_any_like": [["X"], ["Out"]],
    "fill_constant": [[], ["Out"]],
    "gelu": [["X"], ["Out"]],
207
    "instance_norm": [["X"], ["Y"]],
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
    "lookup_table": [["W", "Ids"], ["Out"]],
    "lookup_table_v2": [["W", "Ids"], ["Out"]],
    "norm": [["X"], ["Norm"]],
    "p_norm": [["X"], ["Out"]],
    "pow": [["X"], ["Out"]],
    "reduce_mean": [["X"], ["Out"]],
    "stack": [["X"], ["Y"]],
    "top_k_v2": [["X"], ["Out", "Indices"]],
    "logical_and": [["X", "Y"], ["Out"]],
    "logical_not": [["X"], ["Out"]],
    "meshgrid": [["X"], ["Out"]],
    "roi_align": [["X", "ROIs"], ["Out"]],
    "strided_slice": [["Input"], ["Out"]],
    "where": [["Condition", "X", "Y"], ["Out"]],
    "grid_sampler": [["X", "Grid"], ["Output"]],
    "tile": [["X"], ["Out"]],
    "group_norm": [["X"], ["Y", "Mean", "Variance"]],
    "reduce_sum": [["X"], ["Out"]],
    "square": [["X"], ["Out"]],
    "softplus": [["X"], ["Out"]],
    "shuffle_channel": [["X"], ["Out"]],
C
Chang Xu 已提交
229
    "reduce_max": [["X"], ["Out"]],
230
    "scale": [["X"], ["Out"]],
231 232 233 234 235 236 237 238 239 240 241
}


def _get_op_input_var_names(op):
    """
    Get the input var names of the op.
    Args:
        op(IrNode, Operator): the input op.
    Returns:
        input_var_names or None.
    """
242 243 244
    assert isinstance(
        op, (IrNode, Operator)
    ), "The input op should be IrNode or Operator."
245
    var_names = []
246
    op_name = op.name() if isinstance(op, IrNode) else op.type
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
    if op_name not in _op_real_in_out_name:
        return []

    name_list = _op_real_in_out_name[op_name][0]
    for name in name_list:
        var_name = op.input(name)
        if isinstance(var_name, list):
            var_names.extend(var_name)
        else:
            var_names.append(var_name)
    return var_names


def _get_op_output_var_names(op):
    """ """
262 263 264
    assert isinstance(
        op, (IrNode, Operator)
    ), "The input op should be IrNode or Operator."
265
    var_names = []
266
    op_name = op.name() if isinstance(op, IrNode) else op.type
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
    if op_name not in _op_real_in_out_name:
        return []

    name_list = _op_real_in_out_name[op_name][1]
    for name in name_list:
        var_name = op.output(name)
        if isinstance(var_name, list):
            var_names.extend(var_name)
        else:
            var_names.append(var_name)
    return var_names


def _get_input_name_index(op, input_var_name):
    """Get the input name and index of the var_name in the op"""
282 283 284 285
    assert isinstance(
        op, (IrNode, Operator)
    ), "The input op should be IrNode or Operator."
    op_name = op.name() if isinstance(op, IrNode) else op.type
286 287 288 289 290 291 292 293 294 295 296 297 298 299
    if op_name not in _op_real_in_out_name:
        return None

    res = None
    for argname in _op_real_in_out_name[op_name][0]:
        var_names = op.input(argname)
        for index, name in enumerate(var_names):
            if name == input_var_name:
                res = (argname, index)
    return res


def _get_output_name_index(op, output_var_name):
    """Get the output name and index of the var_name in the op"""
300 301 302 303
    assert isinstance(
        op, (IrNode, Operator)
    ), "The input op should be IrNode or Operator."
    op_name = op.name() if isinstance(op, IrNode) else op.type
304 305 306 307 308 309 310 311 312 313 314 315
    if op_name not in _op_real_in_out_name:
        return None

    name_list = _op_real_in_out_name[op_name][1]
    res = None
    for name in name_list:
        var_name = op.output(name)
        for index, val in enumerate(var_name):
            if val == output_var_name:
                res = (name, index)
    return res

316 317 318 319 320 321

def load_variable_data(scope, var_name):
    '''
    Load variable value from scope
    '''
    var_node = scope.find_var(var_name)
322
    assert var_node is not None, "Cannot find " + var_name + " in scope."
323 324 325 326 327 328 329
    return np.array(var_node.get_tensor())


def set_variable_data(scope, place, var_name, np_value):
    '''
    Set the value of var node by name, if the node exits,
    '''
330 331 332
    assert isinstance(
        np_value, np.ndarray
    ), 'The type of value should be numpy array.'
333
    var_node = scope.find_var(var_name)
334
    if var_node is not None:
335 336 337 338
        tensor = var_node.get_tensor()
        tensor.set(np_value, place)


339 340 341 342 343 344
def quant_tensor(x, scale, quant_axis=0, weight_bits=8, onnx_format=False):
    # symmetry quant
    def _clip(x, scale):
        x[x > scale] = scale
        x[x < -scale] = -scale
        return x
345 346

    bnt = (1 << (weight_bits - 1)) - 1
347 348
    if isinstance(scale, list) and len(scale) == 1:
        scale = scale[0]
349
    if isinstance(scale, list):
350
        assert quant_axis in [0, 1], 'quant_axis should be 0 or 1 for now.'
351 352 353 354
        for i, s in enumerate(scale):
            if s == 0.0:
                s = 1e-8
            if quant_axis == 0:
355 356 357 358 359 360
                if onnx_format:
                    x[i] = np.round(x[i] / s * bnt)
                    x[i] = np.clip(x[i], -bnt - 1, bnt)
                else:
                    x[i] = _clip(x[i], s)
                    x[i] = x[i] / s * bnt
361
            else:
362 363 364 365 366 367
                if onnx_format:
                    x[:, i] = np.round(x[:, i] / s * bnt)
                    x[:, i] = np.clip(x[:, i], -bnt - 1, bnt)
                else:
                    x[:, i] = _clip(x[:, i], s)
                    x[:, i] = x[:, i] / s * bnt
368 369
    else:
        scale = 1e-8 if scale == 0.0 else scale
370 371 372 373 374 375
        if onnx_format:
            x = np.round(x / scale * bnt)
            x = np.clip(x, -bnt - 1, bnt)
        else:
            x = _clip(x, scale)
            x = x / scale * bnt
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
    return x


def dequant_tensor(x, scale, quant_axis=0, weight_bits=8):
    assert quant_axis in [0, 1], 'quant_axis should be 0 or 1 for now.'
    bnt = (1 << (weight_bits - 1)) - 1
    if isinstance(scale, list):
        for i, s in enumerate(scale):
            if s == 0.0:
                s = 1e-8
            if quant_axis == 0:
                x[i] = x[i] * s / bnt
            else:
                x[:, i] = x[:, i] * s / bnt
    else:
        scale = 1e-8 if scale == 0.0 else scale
        x = x * scale / bnt
    return x


396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
def bias_correction_w(x, x_quant, scale_v, quant_axis, weight_bits=8):
    '''
    Bias correction for weight
    '''
    eps = 1e-8
    bnt = (1 << (weight_bits - 1)) - 1
    x_dequant = x_quant.copy()
    if isinstance(scale_v, list):
        if quant_axis == 0:
            for i, s in enumerate(scale_v):
                x_dequant[i] = x_dequant[i] * s / bnt
            quant_bias = x - x_dequant
            mean_bias = quant_bias.reshape(quant_bias.shape[0], -1).mean(-1)
            std_orig = x.reshape(x.shape[0], -1).std(-1)
            std_quant = x_dequant.reshape(x_dequant.shape[0], -1).std(-1)
            std_bias = std_orig / (std_quant + eps)
        else:
            for i, s in enumerate(scale_v):
                x_dequant[:, i] = x_quant[:, i] * s / bnt
            quant_bias = x - x_dequant
            mean_bias = np.array(
417 418
                [quant_bias[:, i].mean() for i in range(quant_bias.shape[1])]
            )
419 420
            std_orig = np.array([x[:, i].std() for i in range(x.shape[1])])
            std_quant = np.array(
421 422
                [x_dequant[:, i].std() for i in range(x_dequant.shape[1])]
            )
423 424 425 426 427 428 429 430 431 432
            std_bias = std_orig / (std_quant + eps)
    else:
        x_dequant = x_quant * scale_v / bnt
        mean_bias = (x - x_dequant).mean()
        std_bias = x.std() / (x_dequant.std() + eps)
    if mean_bias.ndim == 1:
        std_bias = np.resize(std_bias, x.shape)
        mean_bias = np.resize(mean_bias, x.shape)

    x_dequant = (mean_bias + x_dequant) * std_bias
433 434 435
    quantized_param_v = quant_tensor(
        x_dequant, scale_v, quant_axis, weight_bits
    )
436 437 438
    return quantized_param_v


439 440 441 442 443 444
def stable_sigmoid(x):
    sig = np.where(x < 0, np.exp(x) / (1 + np.exp(x)), 1 / (1 + np.exp(-x)))
    return sig


def calculate_quant_cos_error(orig_tensor, qdq_tensor):
445 446 447 448
    cos_sim = np.inner(orig_tensor.flatten(), qdq_tensor.flatten()) / (
        np.linalg.norm(orig_tensor.flatten())
        * np.linalg.norm(qdq_tensor.flatten())
    )
449
    return cos_sim
450 451


452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
def move_persistable_var_to_global_block(program):
    # Move sub blocks persistable var to global block
    global_block = program.global_block()
    for _op in global_block.ops:
        if _op.type == "while":
            _block_id = _op.attr("sub_block").id
            _block = program.block(_block_id)
            persistables = []
            for _name, _var in _block.vars.items():
                if _var.persistable:
                    global_block._clone_variable(_var)
                    persistables.append(_name)
            for _name in persistables:
                _block._remove_var(_name)
            persistables.extend(_op.input('X'))
            _op.desc.set_input("X", persistables)


470
def l2_loss(gt, pred):
471
    return ((gt - pred) ** 2).mean()
472 473


474
class tqdm:
475 476 477 478 479 480 481 482 483 484 485
    def __init__(self, total, bar_format='Loading|{bar}', ncols=80):
        self.total = total
        self.bar_format = bar_format
        self.ncols = ncols
        self.n = 0

    def update(self, n=1):
        self.n += n
        a = "=" * round((self.n / self.total) * self.ncols)
        b = " " * (self.ncols - len(a))
        prefix = self.bar_format.split('|')[0]
486 487 488
        sys.stderr.write(
            "\r{}|{}=>{}| {}/{}".format(prefix, a, b, self.n, self.total)
        )
489 490 491 492 493 494 495
        sys.stderr.flush()

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        sys.stderr.write('\n')