process_group_nccl.py 18.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import random
16 17
import unittest

18 19 20
import numpy as np

import paddle
21
import paddle.distributed as dist
22 23
from paddle.fluid.dygraph.parallel import ParallelEnv
from paddle.fluid.framework import _test_eager_guard
24 25 26


def init_process_group(strategy=None):
27 28 29
    nranks = ParallelEnv().nranks
    rank = ParallelEnv().local_rank
    is_master = True if rank == 0 else False
30
    pg_group = dist.init_parallel_env()
31

32
    return pg_group.process_group
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47


class TestProcessGroupFp32(unittest.TestCase):
    def setUp(self):
        paddle.seed(2022)
        random.seed(2022)
        np.random.seed(2022)
        self.config()

    def config(self):
        self.dtype = "float32"
        self.shape = (2, 10, 5)

    def test_create_process_group_nccl(self):
        with _test_eager_guard():
48 49
            device_id = paddle.distributed.ParallelEnv().dev_id
            paddle.set_device('gpu:%d' % device_id)
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

            pg = init_process_group()
            print("rank:", pg.rank(), "size:", pg.size(), "name:", pg.name())
            print("test new group api ok")

            # test allreduce sum
            # rank 0
            x = np.random.random(self.shape).astype(self.dtype)
            tensor_x = paddle.to_tensor(x)
            # rank 1
            y = np.random.random(self.shape).astype(self.dtype)
            tensor_y = paddle.to_tensor(y)

            sum_result = tensor_x + tensor_y
            if pg.rank() == 0:
65
                task = dist.all_reduce(tensor_x)
66 67
                assert np.array_equal(tensor_x, sum_result)
            else:
68
                task = dist.all_reduce(tensor_y)
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
                assert np.array_equal(tensor_y, sum_result)

            print("test allreduce sum api ok")

            # test allreduce max
            # rank 0
            x = np.random.random(self.shape).astype(self.dtype)
            tensor_x = paddle.to_tensor(x)
            # rank 1
            y = np.random.random(self.shape).astype(self.dtype)
            tensor_y = paddle.to_tensor(y)

            max_result = paddle.maximum(tensor_x, tensor_y)

            if pg.rank() == 0:
84 85 86
                task = dist.all_reduce(
                    tensor_x, dist.ReduceOp.MAX, sync_op=False
                )
87 88 89
                task.wait()
                assert np.array_equal(tensor_x, max_result)
            else:
90 91 92
                task = dist.all_reduce(
                    tensor_y, dist.ReduceOp.MAX, sync_op=False
                )
93 94 95 96 97
                task.wait()
                assert np.array_equal(tensor_y, max_result)

            print("test allreduce max api ok")

98 99 100 101 102 103 104 105 106 107 108
            # test allreduce min
            # rank 0
            x = np.random.random(self.shape).astype(self.dtype)
            tensor_x = paddle.to_tensor(x)
            # rank 1
            y = np.random.random(self.shape).astype(self.dtype)
            tensor_y = paddle.to_tensor(y)

            min_result = paddle.minimum(tensor_x, tensor_y)

            if pg.rank() == 0:
109 110 111
                task = dist.all_reduce(
                    tensor_x, dist.ReduceOp.MIN, sync_op=False
                )
112 113 114
                task.wait()
                assert np.array_equal(tensor_x, min_result)
            else:
115 116 117
                task = dist.all_reduce(
                    tensor_y, dist.ReduceOp.MIN, sync_op=False
                )
118 119 120 121 122
                task.wait()
                assert np.array_equal(tensor_y, min_result)

            print("test allreduce min api ok")

123 124 125 126 127 128 129 130 131 132 133
            # test allreduce prod
            # rank 0
            x = np.random.random(self.shape).astype(self.dtype)
            tensor_x = paddle.to_tensor(x)
            # rank 1
            y = np.random.random(self.shape).astype(self.dtype)
            tensor_y = paddle.to_tensor(y)

            prod_result = np.multiply(x, y)

            if pg.rank() == 0:
134 135 136
                task = dist.all_reduce(
                    tensor_x, dist.ReduceOp.PROD, sync_op=False
                )
137 138 139
                task.wait()
                assert np.array_equal(tensor_x, prod_result)
            else:
140 141 142
                task = dist.all_reduce(
                    tensor_y, dist.ReduceOp.PROD, sync_op=False
                )
143 144 145 146 147
                task.wait()
                assert np.array_equal(tensor_y, prod_result)

            print("test allreduce prod api ok")

148 149 150 151 152 153 154 155 156 157
            # test broadcast
            # rank 0
            x = np.random.random(self.shape).astype(self.dtype)
            tensor_x = paddle.to_tensor(x)
            # rank 1
            y = np.random.random(self.shape).astype(self.dtype)
            tensor_y = paddle.to_tensor(y)

            broadcast_result = paddle.assign(tensor_x)
            if pg.rank() == 0:
158
                task = dist.broadcast(tensor_x, 0, sync_op=False)
159 160 161 162 163
                task.synchronize()
                paddle.device.cuda.synchronize()
                assert task.is_completed()
                assert np.array_equal(broadcast_result, tensor_x)
            else:
164
                task = dist.broadcast(tensor_y, 0)
165 166 167 168 169
                paddle.device.cuda.synchronize()
                assert np.array_equal(broadcast_result, tensor_y)

            print("test broadcast api ok")

170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
            # test broadcast with shape=[]
            # rank 0
            x = np.random.random([]).astype(self.dtype)
            tensor_x = paddle.to_tensor(x)
            # rank 1
            y = np.random.random([]).astype(self.dtype)
            tensor_y = paddle.to_tensor(y)

            broadcast_result = paddle.assign(tensor_x)
            if pg.rank() == 0:
                task = dist.broadcast(tensor_x, 0, sync_op=False)
                task.synchronize()
                paddle.device.cuda.synchronize()
                assert task.is_completed()
                assert np.array_equal(broadcast_result, tensor_x)
            else:
                task = dist.broadcast(tensor_y, 0)
                paddle.device.cuda.synchronize()
                assert np.array_equal(broadcast_result, tensor_y)
            assert tensor_y.shape == []

            print("test broadcast api with shape=[] ok")

B
Baibaifan 已提交
193 194 195
            # test barrier
            # rank 0
            if pg.rank() == 0:
196
                pg.barrier(device_id)
B
Baibaifan 已提交
197 198
            # rank 1
            else:
199
                task = pg.barrier(device_id)
B
Baibaifan 已提交
200 201 202 203
                task.wait()

            print("test barrier api ok\n")

204
            # test allgather
B
Baibaifan 已提交
205 206
            # rank 0
            x = np.random.random(self.shape).astype(self.dtype)
207 208 209 210 211 212 213 214 215 216 217 218 219
            y = np.random.random(self.shape).astype(self.dtype)
            tensor_x = paddle.to_tensor(x)
            tensor_y = paddle.to_tensor(y)
            out_shape = list(self.shape)
            out_shape[0] *= 2
            out = np.random.random(out_shape).astype(self.dtype)
            tensor_out = paddle.to_tensor(out)
            if pg.rank() == 0:
                task = pg.all_gather(tensor_x, tensor_out)
                task.wait()
                paddle.device.cuda.synchronize()
            # rank 1
            else:
220
                tensor_out_list = [
221
                    paddle.empty_like(tensor_x),
222
                    paddle.empty_like(tensor_x),
223
                ]
224
                task = dist.all_gather(tensor_out_list, tensor_y, sync_op=False)
225
                paddle.device.cuda.synchronize()
226
                tensor_out = paddle.concat(tensor_out_list)
227
            out_1 = paddle.slice(tensor_out, [0], [0], [out_shape[0] // 2])
228 229 230
            out_2 = paddle.slice(
                tensor_out, [0], [out_shape[0] // 2], [out_shape[0]]
            )
231 232 233 234
            assert np.array_equal(tensor_x, out_1)
            assert np.array_equal(tensor_y, out_2)
            print("test allgather api ok\n")

235 236 237 238 239 240 241
            if pg.rank() == 0:
                task = pg.all_gather(tensor_x, tensor_out)
                task.wait()
                paddle.device.cuda.synchronize()
            # rank 1
            else:
                tensor_out_list = []
242
                task = dist.all_gather(tensor_out_list, tensor_y, sync_op=False)
243 244 245
                paddle.device.cuda.synchronize()
                tensor_out = paddle.concat(tensor_out_list)
            out_1 = paddle.slice(tensor_out, [0], [0], [out_shape[0] // 2])
246 247 248
            out_2 = paddle.slice(
                tensor_out, [0], [out_shape[0] // 2], [out_shape[0]]
            )
249 250 251 252
            assert np.array_equal(tensor_x, out_1)
            assert np.array_equal(tensor_y, out_2)
            print("test allgather api2 ok\n")

253 254 255 256 257 258
            # test alltoall
            # rank 0
            x = np.random.random(self.shape).astype(self.dtype)
            y = np.random.random(self.shape).astype(self.dtype)
            out1 = np.random.random(self.shape).astype(self.dtype)
            out2 = np.random.random(self.shape).astype(self.dtype)
B
Baibaifan 已提交
259
            tensor_x = paddle.to_tensor(x)
260 261 262
            tensor_y = paddle.to_tensor(y)
            tensor_out1 = paddle.to_tensor(out1)
            tensor_out2 = paddle.to_tensor(out2)
263 264 265 266 267 268
            raw_tensor_x_2 = paddle.slice(
                tensor_x, [0], [self.shape[0] // 2], [self.shape[0]]
            )
            raw_tensor_y_1 = paddle.slice(
                tensor_y, [0], [0], [self.shape[0] // 2]
            )
B
Baibaifan 已提交
269
            if pg.rank() == 0:
270
                task = pg.alltoall(tensor_x, tensor_out1)
B
Baibaifan 已提交
271 272 273
                task.wait()
            # rank 1
            else:
274 275 276 277
                in_1, in_2 = paddle.split(tensor_y, 2)
                out_1, out_2 = paddle.split(tensor_out2, 2)
                out_tensor_list = [out_1, out_2]
                task = dist.alltoall([in_1, in_2], out_tensor_list)
B
Baibaifan 已提交
278
                paddle.device.cuda.synchronize()
279
                tensor_out2 = paddle.concat(out_tensor_list)
280 281 282
            out1_2 = paddle.slice(
                tensor_out1, [0], [self.shape[0] // 2], [self.shape[0]]
            )
283 284 285 286 287 288 289
            out2_1 = paddle.slice(tensor_out2, [0], [0], [self.shape[0] // 2])
            if pg.rank() == 0:
                assert np.array_equal(out1_2.numpy(), raw_tensor_y_1.numpy())
            else:
                assert np.array_equal(out2_1, raw_tensor_x_2)
            print("test alltoall api ok\n")

290 291 292 293 294 295 296 297
            x = np.random.random(self.shape).astype(self.dtype)
            y = np.random.random(self.shape).astype(self.dtype)
            out1 = np.random.random(self.shape).astype(self.dtype)
            out2 = np.random.random(self.shape).astype(self.dtype)
            tensor_x = paddle.to_tensor(x)
            tensor_y = paddle.to_tensor(y)
            tensor_out1 = paddle.to_tensor(out1)
            tensor_out2 = paddle.to_tensor(out2)
298 299 300 301 302 303
            raw_tensor_x_2 = paddle.slice(
                tensor_x, [0], [self.shape[0] // 2], [self.shape[0]]
            )
            raw_tensor_y_1 = paddle.slice(
                tensor_y, [0], [0], [self.shape[0] // 2]
            )
304 305 306 307 308 309 310 311 312 313 314
            if pg.rank() == 0:
                task = pg.alltoall(tensor_x, tensor_out1)
                task.wait()
            # rank 1
            else:
                in_1, in_2 = paddle.split(tensor_y, 2)
                out_1, out_2 = paddle.split(tensor_out2, 2)
                out_tensor_list = []
                task = dist.alltoall([in_1, in_2], out_tensor_list)
                paddle.device.cuda.synchronize()
                tensor_out2 = paddle.concat(out_tensor_list)
315 316 317
            out1_2 = paddle.slice(
                tensor_out1, [0], [self.shape[0] // 2], [self.shape[0]]
            )
318 319 320 321 322 323 324
            out2_1 = paddle.slice(tensor_out2, [0], [0], [self.shape[0] // 2])
            if pg.rank() == 0:
                assert np.array_equal(out1_2.numpy(), raw_tensor_y_1.numpy())
            else:
                assert np.array_equal(out2_1, raw_tensor_x_2)
            print("test alltoall api2 ok\n")

325 326 327 328 329 330 331 332
            # test Reduce
            # rank 0
            x = np.random.random(self.shape).astype(self.dtype)
            y = np.random.random(self.shape).astype(self.dtype)
            tensor_x = paddle.to_tensor(x)
            tensor_y = paddle.to_tensor(y)
            sum_result = tensor_x + tensor_y
            if pg.rank() == 0:
333
                task = dist.reduce(tensor_x, 0, sync_op=True)
334 335 336
                paddle.device.cuda.synchronize()
            # rank 1
            else:
337
                task = dist.reduce(tensor_y, 0, sync_op=False)
338 339 340 341 342 343
                task.wait()
                paddle.device.cuda.synchronize()
            if pg.rank() == 0:
                assert np.array_equal(tensor_x, sum_result)
            print("test reduce sum api ok\n")

344 345 346 347 348 349 350 351 352 353 354
            # test reduce max
            # rank 0
            x = np.random.random(self.shape).astype(self.dtype)
            tensor_x = paddle.to_tensor(x)
            # rank 1
            y = np.random.random(self.shape).astype(self.dtype)
            tensor_y = paddle.to_tensor(y)

            max_result = paddle.maximum(tensor_x, tensor_y)

            if pg.rank() == 0:
355 356 357
                task = dist.reduce(
                    tensor_x, 0, dist.ReduceOp.MAX, sync_op=False
                )
358 359 360
                task.wait()
                assert np.array_equal(tensor_x, max_result)
            else:
361 362 363
                task = dist.reduce(
                    tensor_y, 0, dist.ReduceOp.MAX, sync_op=False
                )
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
                task.wait()

            print("test reduce max api ok")

            # test reduce min
            # rank 0
            x = np.random.random(self.shape).astype(self.dtype)
            tensor_x = paddle.to_tensor(x)
            # rank 1
            y = np.random.random(self.shape).astype(self.dtype)
            tensor_y = paddle.to_tensor(y)

            min_result = paddle.minimum(tensor_x, tensor_y)

            if pg.rank() == 0:
379 380 381
                task = dist.reduce(
                    tensor_x, 0, dist.ReduceOp.MIN, sync_op=False
                )
382 383 384
                task.wait()
                assert np.array_equal(tensor_x, min_result)
            else:
385 386 387
                task = dist.reduce(
                    tensor_y, 0, dist.ReduceOp.MIN, sync_op=False
                )
388 389 390 391
                task.wait()

            print("test reduce min api ok")

392 393 394 395 396 397 398 399 400 401 402
            # test reduce product
            # rank 0
            x = np.random.random(self.shape).astype(self.dtype)
            tensor_x = paddle.to_tensor(x)
            # rank 1
            y = np.random.random(self.shape).astype(self.dtype)
            tensor_y = paddle.to_tensor(y)

            prod_result = np.multiply(x, y)

            if pg.rank() == 0:
403 404 405
                task = dist.reduce(
                    tensor_x, 0, dist.ReduceOp.PROD, sync_op=False
                )
406 407 408
                task.wait()
                assert np.array_equal(tensor_x, prod_result)
            else:
409 410 411
                task = dist.reduce(
                    tensor_y, 0, dist.ReduceOp.PROD, sync_op=False
                )
412 413 414
                task.wait()

            print("test reduce prod api ok")
415 416 417 418 419 420 421 422 423
            # test Scatter
            # rank 0
            in_shape = list(self.shape)
            in_shape[0] *= 2
            x = np.random.random(in_shape).astype(self.dtype)
            y = np.random.random(self.shape).astype(self.dtype)
            tensor_x = paddle.to_tensor(x)
            tensor_y = paddle.to_tensor(y)
            if pg.rank() == 0:
424
                in_1, in_2 = paddle.split(tensor_x, 2)
425
                task = dist.scatter(tensor_y, [in_1, in_2], 0, sync_op=True)
426
                # task.wait()
427 428 429
                paddle.device.cuda.synchronize()
            # rank 1
            else:
430
                task = dist.scatter(tensor_y, [], 0, sync_op=False)
431 432 433
                task.wait()
                paddle.device.cuda.synchronize()
            out1 = paddle.slice(tensor_x, [0], [0], [self.shape[0]])
434 435 436
            out2 = paddle.slice(
                tensor_x, [0], [self.shape[0]], [self.shape[0] * 2]
            )
437 438 439 440 441
            if pg.rank() == 0:
                assert np.array_equal(tensor_y, out1)
            else:
                assert np.array_equal(tensor_y, out2)
            print("test scatter api ok\n")
B
Baibaifan 已提交
442

443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
            # test Scatter with shape=[]
            # rank 0
            x = np.random.random([]).astype(self.dtype)
            y = np.random.random([]).astype(self.dtype)
            tensor_x = paddle.to_tensor(x)
            tensor_y = paddle.to_tensor(y)
            if pg.rank() == 0:
                in_1, in_2 = tensor_x, tensor_x + 1
                task = dist.scatter(tensor_y, [in_1, in_2], 0, sync_op=True)
                paddle.device.cuda.synchronize()
            # rank 1
            else:
                task = dist.scatter(tensor_y, [], 0, sync_op=True)
                task.wait()
                paddle.device.cuda.synchronize()
            out1 = paddle.assign(tensor_x)
            out2 = paddle.assign(tensor_x + 1)
            if pg.rank() == 0:
                assert np.array_equal(tensor_y, out1)
            else:
                assert np.array_equal(tensor_y, out2), f"{tensor_y}, {out2}"
            assert tensor_y.shape == []
            print("test scatter api with shape=[] ok\n")

467 468 469 470 471 472 473 474 475
            # test send min
            # rank 0
            x = np.random.random(self.shape).astype(self.dtype)
            tensor_x = paddle.to_tensor(x)
            # rank 1
            y = np.random.random(self.shape).astype(self.dtype)
            tensor_y = paddle.to_tensor(y)

            if pg.rank() == 0:
476
                task = dist.send(tensor_x, 1, sync_op=False)
477 478
                task.wait()
            else:
479
                task = dist.recv(tensor_y, 0, sync_op=False)
480 481 482 483 484 485 486 487 488 489 490 491 492 493
                task.wait()
                assert np.array_equal(tensor_y, tensor_x)

            print("test send api ok")

            # test send min
            # rank 0
            x = np.random.random(self.shape).astype(self.dtype)
            tensor_x = paddle.to_tensor(x)
            # rank 1
            y = np.random.random(self.shape).astype(self.dtype)
            tensor_y = paddle.to_tensor(y)

            if pg.rank() == 0:
494
                task = dist.send(tensor_x, 1, sync_op=True)
495
            else:
496
                task = dist.recv(tensor_y, 0, sync_op=True)
497 498 499 500
                assert np.array_equal(tensor_y, tensor_x)

            print("test send api ok")

501 502 503 504 505 506 507 508 509 510 511 512 513 514 515

class TestProcessGroupFp16(TestProcessGroupFp32):
    def setUp(self):
        paddle.seed(2022)
        random.seed(2022)
        np.random.seed(2022)
        self.config()

    def config(self):
        self.dtype = "float16"
        self.shape = (4, 20, 20)


if __name__ == "__main__":
    unittest.main()