cudnn_helper.h 12.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
D
dangqingqing 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

Y
Pass CI  
Yu Yang 已提交
17
#include <vector>
18 19

#include "paddle/fluid/framework/operator.h"
Y
Yi Wang 已提交
20 21
#include "paddle/fluid/platform/dynload/cudnn.h"
#include "paddle/fluid/platform/enforce.h"
K
Kexin Zhao 已提交
22
#include "paddle/fluid/platform/float16.h"
Y
Yi Wang 已提交
23
#include "paddle/fluid/platform/macros.h"
D
dangqingqing 已提交
24

D
dzhwinter 已提交
25 26
DECLARE_bool(cudnn_deterministic);

D
dangqingqing 已提交
27 28 29
namespace paddle {
namespace platform {

Q
Qiao Longfei 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
inline const char* cudnnGetErrorString(cudnnStatus_t status) {
  switch (status) {
    case CUDNN_STATUS_SUCCESS:
      return "CUDNN_STATUS_SUCCESS";
    case CUDNN_STATUS_NOT_INITIALIZED:
      return "CUDNN_STATUS_NOT_INITIALIZED";
    case CUDNN_STATUS_ALLOC_FAILED:
      return "CUDNN_STATUS_ALLOC_FAILED";
    case CUDNN_STATUS_BAD_PARAM:
      return "CUDNN_STATUS_BAD_PARAM";
    case CUDNN_STATUS_INTERNAL_ERROR:
      return "CUDNN_STATUS_INTERNAL_ERROR";
    case CUDNN_STATUS_INVALID_VALUE:
      return "CUDNN_STATUS_INVALID_VALUE";
    case CUDNN_STATUS_ARCH_MISMATCH:
      return "CUDNN_STATUS_ARCH_MISMATCH";
    case CUDNN_STATUS_MAPPING_ERROR:
      return "CUDNN_STATUS_MAPPING_ERROR";
    case CUDNN_STATUS_EXECUTION_FAILED:
      return "CUDNN_STATUS_EXECUTION_FAILED";
    case CUDNN_STATUS_NOT_SUPPORTED:
      return "CUDNN_STATUS_NOT_SUPPORTED";
    case CUDNN_STATUS_LICENSE_ERROR:
      return "CUDNN_STATUS_LICENSE_ERROR";
    default:
      return "Unknown cudnn error number";
  }
}

#define CUDNN_VERSION_MIN(major, minor, patch) \
  (CUDNN_VERSION >= ((major)*1000 + (minor)*100 + (patch)))

D
dzhwinter 已提交
62
#if !defined(_WIN32)
T
typhoonzero 已提交
63 64 65 66 67 68
#define CUDNN_ENFORCE(condition)                                     \
  do {                                                               \
    cudnnStatus_t status = condition;                                \
    if (UNLIKELY(status != CUDNN_STATUS_SUCCESS)) {                  \
      PADDLE_THROW(::paddle::platform::cudnnGetErrorString(status)); \
    }                                                                \
Q
Qiao Longfei 已提交
69
  } while (false)
D
dzhwinter 已提交
70
#else
D
dzhwinter 已提交
71 72 73 74 75 76 77 78
// windows
#define CUDNN_ENFORCE(condition)                                    \
  do {                                                              \
    cudnnStatus_t status = condition;                               \
    if (status != CUDNN_STATUS_SUCCESS) {                           \
      std::cerr << ::paddle::platform::cudnnGetErrorString(status); \
    }                                                               \
  } while (false)
D
dzhwinter 已提交
79
#endif
Q
Qiao Longfei 已提交
80

D
"fix"  
dzhwinter 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93
enum class DataLayout {  // Not use
  kNHWC,
  kNCHW,
  kNCDHW,
  kNCHW_VECT_C,
};

enum class PoolingMode {
  kMaximum,
  kAverage,
  kMaximumDeterministic,
};

D
"done"  
dzhwinter 已提交
94 95 96 97 98 99
#if CUDNN_VERSION < 6000
#pragma message "CUDNN version under 6.0 is supported at best effort."
#pragma message "We strongly encourage you to move to 6.0 and above."
#pragma message "This message is intended to annoy you enough to update."
#pragma message \
    "please see https://docs.nvidia.com/deeplearning/sdk/cudnn-release-notes/"
D
dangqingqing 已提交
100

D
dzhwinter 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113
inline cudnnPoolingMode_t GetPoolingMode(const PoolingMode& mode) {
  switch (mode) {
    case PoolingMode::kMaximumDeterministic:
      return CUDNN_POOLING_MAX;
    case PoolingMode::kAverage:
      return CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING;
    case PoolingMode::kMaximum:
      return CUDNN_POOLING_MAX;
    default:
      PADDLE_THROW("Unexpected pooling mode.");
  }
}
#else
D
dangqingqing 已提交
114

D
dzhwinter 已提交
115 116 117 118 119 120 121 122 123 124 125 126
inline cudnnPoolingMode_t GetPoolingMode(const PoolingMode& mode) {
  switch (mode) {
    case PoolingMode::kMaximumDeterministic:
      return CUDNN_POOLING_MAX_DETERMINISTIC;
    case PoolingMode::kAverage:
      return CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING;
    case PoolingMode::kMaximum:
      return CUDNN_POOLING_MAX;
    default:
      PADDLE_THROW("Unexpected pooling mode.");
  }
}
D
dzhwinter 已提交
127 128
#endif  // CUDNN_VERSION < 6000

D
dangqingqing 已提交
129 130 131
template <typename T>
class CudnnDataType;

K
Kexin Zhao 已提交
132 133 134 135
template <>
class CudnnDataType<float16> {
 public:
  static const cudnnDataType_t type = CUDNN_DATA_HALF;
K
Kexin Zhao 已提交
136
  // The scaling param type is float for HALF and FLOAT tensors
K
update  
Kexin Zhao 已提交
137 138
  using ScalingParamType = const float;
  using BatchNormParamType = float;
K
Kexin Zhao 已提交
139
  static ScalingParamType* kOne() {
K
Kexin Zhao 已提交
140
    static ScalingParamType v = 1.0;
K
Kexin Zhao 已提交
141 142 143
    return &v;
  }
  static ScalingParamType* kZero() {
K
Kexin Zhao 已提交
144
    static ScalingParamType v = 0.0;
K
Kexin Zhao 已提交
145 146 147 148
    return &v;
  }
};

D
dangqingqing 已提交
149 150 151 152
template <>
class CudnnDataType<float> {
 public:
  static const cudnnDataType_t type = CUDNN_DATA_FLOAT;
K
update  
Kexin Zhao 已提交
153 154
  using ScalingParamType = const float;
  using BatchNormParamType = float;
Q
Qiao Longfei 已提交
155 156 157 158 159 160 161 162
  static ScalingParamType* kOne() {
    static ScalingParamType v = 1.0;
    return &v;
  }
  static ScalingParamType* kZero() {
    static ScalingParamType v = 0.0;
    return &v;
  }
D
dangqingqing 已提交
163 164 165 166 167 168
};

template <>
class CudnnDataType<double> {
 public:
  static const cudnnDataType_t type = CUDNN_DATA_DOUBLE;
K
update  
Kexin Zhao 已提交
169 170
  using ScalingParamType = const double;
  using BatchNormParamType = double;
Q
Qiao Longfei 已提交
171 172 173 174 175 176 177 178
  static ScalingParamType* kOne() {
    static ScalingParamType v = 1.0;
    return &v;
  }
  static ScalingParamType* kZero() {
    static ScalingParamType v = 0.0;
    return &v;
  }
D
dangqingqing 已提交
179 180
};

C
chengduoZH 已提交
181 182
inline cudnnTensorFormat_t GetCudnnTensorFormat(
    const DataLayout& order) {  // Not use
D
dangqingqing 已提交
183 184 185 186 187
  switch (order) {
    case DataLayout::kNHWC:
      return CUDNN_TENSOR_NHWC;
    case DataLayout::kNCHW:
      return CUDNN_TENSOR_NCHW;
C
chengduoZH 已提交
188
    case DataLayout::kNCDHW:
武毅 已提交
189
      return CUDNN_TENSOR_NCHW;  // NOTE: cudnn treat NdTensor as the same
D
dangqingqing 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
    default:
      PADDLE_THROW("Unknown cudnn equivalent for order");
  }
  return CUDNN_TENSOR_NCHW;
}

class ScopedTensorDescriptor {
 public:
  ScopedTensorDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnCreateTensorDescriptor(&desc_));
  }
  ~ScopedTensorDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnDestroyTensorDescriptor(desc_));
  }

  inline cudnnTensorDescriptor_t descriptor(const cudnnTensorFormat_t format,
                                            const cudnnDataType_t type,
武毅 已提交
207 208 209
                                            const std::vector<int>& dims,
                                            const int groups = 1) {
    // the format is not used now, will add later
D
dangqingqing 已提交
210 211
    std::vector<int> strides(dims.size());
    strides[dims.size() - 1] = 1;
212 213
    for (int i = dims.size() - 2; i >= 0; i--) {
      strides[i] = dims[i + 1] * strides[i + 1];
D
dangqingqing 已提交
214
    }
武毅 已提交
215
    // Update tensor descriptor dims setting if groups > 1
武毅 已提交
216
    // NOTE: Assume using NCHW or NCDHW order
武毅 已提交
217 218 219 220
    std::vector<int> dims_with_group(dims.begin(), dims.end());  // copy
    if (groups > 1) {
      dims_with_group[1] = dims_with_group[1] / groups;
    }
221
    PADDLE_ENFORCE(dynload::cudnnSetTensorNdDescriptor(
武毅 已提交
222 223
        desc_, type, dims_with_group.size(), dims_with_group.data(),
        strides.data()));
D
dangqingqing 已提交
224 225 226 227 228
    return desc_;
  }

  template <typename T>
  inline cudnnTensorDescriptor_t descriptor(const DataLayout& order,
武毅 已提交
229 230 231 232
                                            const std::vector<int>& dims,
                                            const int groups = 1) {
    return descriptor(GetCudnnTensorFormat(order), CudnnDataType<T>::type, dims,
                      groups);
D
dangqingqing 已提交
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
  }

 private:
  cudnnTensorDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedTensorDescriptor);
};

class ScopedFilterDescriptor {
 public:
  ScopedFilterDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnCreateFilterDescriptor(&desc_));
  }
  ~ScopedFilterDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnDestroyFilterDescriptor(desc_));
  }

  inline cudnnFilterDescriptor_t descriptor(const cudnnTensorFormat_t format,
                                            const cudnnDataType_t type,
武毅 已提交
251 252
                                            const std::vector<int>& kernel,
                                            const int groups = 1) {
C
chengduoZH 已提交
253
    // filter layout: MCHW(MCDHW), where M is the number of
武毅 已提交
254
    // output image channels, C is the number of input image channels,
C
chengduoZH 已提交
255 256
    // D is the depth of the filter, H is the height of the filter, and W is the
    // width of the filter.
武毅 已提交
257 258 259 260 261
    std::vector<int> kernel_with_group(kernel.begin(), kernel.end());
    if (groups > 1) {
      kernel_with_group[0] /= groups;
      // NOTE: input filter(C) of the filter is already asserted to be C/groups.
    }
262
    PADDLE_ENFORCE(dynload::cudnnSetFilterNdDescriptor(
武毅 已提交
263 264
        desc_, type, format, kernel_with_group.size(),
        kernel_with_group.data()));
D
dangqingqing 已提交
265 266 267 268 269
    return desc_;
  }

  template <typename T>
  inline cudnnFilterDescriptor_t descriptor(const DataLayout& order,
武毅 已提交
270 271
                                            const std::vector<int>& kernel,
                                            const int groups = 1) {
D
dangqingqing 已提交
272
    return descriptor(GetCudnnTensorFormat(order), CudnnDataType<T>::type,
武毅 已提交
273
                      kernel, groups);
D
dangqingqing 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
  }

 private:
  cudnnFilterDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedFilterDescriptor);
};

class ScopedConvolutionDescriptor {
 public:
  ScopedConvolutionDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnCreateConvolutionDescriptor(&desc_));
  }
  ~ScopedConvolutionDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnDestroyConvolutionDescriptor(desc_));
  }

  inline cudnnConvolutionDescriptor_t descriptor(
      cudnnDataType_t type, const std::vector<int>& pads,
      const std::vector<int>& strides, const std::vector<int>& dilations) {
    PADDLE_ENFORCE_EQ(pads.size(), strides.size());
    PADDLE_ENFORCE_EQ(pads.size(), dilations.size());
295

296
#if !CUDNN_VERSION_MIN(6, 0, 0)
297 298 299 300 301
    // cudnn v5 does not support dilation conv, the argument is called upscale
    // instead of dilations and it is must be one.
    for (size_t i = 0; i < dilations.size(); ++i) {
      PADDLE_ENFORCE_EQ(
          dilations[i], 1,
302 303 304
          "Dilations conv is not supported in this cuDNN version(%d.%d.%d).",
          CUDNN_VERSION / 1000, CUDNN_VERSION % 1000 / 100,
          CUDNN_VERSION % 100);
305 306 307
    }
#endif

K
Kexin Zhao 已提交
308 309
    cudnnDataType_t compute_type =
        (type == CUDNN_DATA_DOUBLE) ? CUDNN_DATA_DOUBLE : CUDNN_DATA_FLOAT;
310
    PADDLE_ENFORCE(dynload::cudnnSetConvolutionNdDescriptor(
D
dangqingqing 已提交
311
        desc_, pads.size(), pads.data(), strides.data(), dilations.data(),
K
Kexin Zhao 已提交
312
        CUDNN_CROSS_CORRELATION, compute_type));
313
    return desc_;
D
dangqingqing 已提交
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
  }

  template <typename T>
  inline cudnnConvolutionDescriptor_t descriptor(
      const std::vector<int>& pads, const std::vector<int>& strides,
      const std::vector<int>& dilations) {
    return descriptor(CudnnDataType<T>::type, pads, strides, dilations);
  }

 private:
  cudnnConvolutionDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedConvolutionDescriptor);
};

class ScopedPoolingDescriptor {
 public:
  ScopedPoolingDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnCreatePoolingDescriptor(&desc_));
  }
  ~ScopedPoolingDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnDestroyPoolingDescriptor(desc_));
  }

  inline cudnnPoolingDescriptor_t descriptor(const PoolingMode& mode,
                                             const std::vector<int>& kernel,
                                             const std::vector<int>& pads,
                                             const std::vector<int>& strides) {
    PADDLE_ENFORCE_EQ(kernel.size(), pads.size());
    PADDLE_ENFORCE_EQ(kernel.size(), strides.size());
343
    PADDLE_ENFORCE(dynload::cudnnSetPoolingNdDescriptor(
D
dzhwinter 已提交
344
        desc_, (GetPoolingMode(mode)),
D
dangqingqing 已提交
345 346
        CUDNN_PROPAGATE_NAN,  // Always propagate nans.
        kernel.size(), kernel.data(), pads.data(), strides.data()));
347
    return desc_;
D
dangqingqing 已提交
348 349 350 351 352 353 354
  }

 private:
  cudnnPoolingDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedPoolingDescriptor);
};

355 356 357 358 359
inline bool CanCUDNNBeUsed(const framework::ExecutionContext& ctx) {
  bool use_cudnn = ctx.Attr<bool>("use_cudnn");
  use_cudnn &= paddle::platform::is_gpu_place(ctx.GetPlace());
#ifdef PADDLE_WITH_CUDA
  if (use_cudnn) {
360
    auto& dev_ctx = ctx.device_context<platform::CUDADeviceContext>();
361 362 363 364 365 366
    use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
  }
#endif
  return use_cudnn;
}

D
dangqingqing 已提交
367 368
}  // namespace platform
}  // namespace paddle