test_row_conv_op.py 6.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

S
Siddharth Goyal 已提交
15 16
import unittest
import numpy as np
17
from op_test import OpTest
18
from paddle import fluid
S
Siddharth Goyal 已提交
19 20 21 22


def row_conv_forward(x, lod, wt):
    out = np.zeros_like(x)
23 24 25 26
    num_sequences = len(lod[0])
    seq_info = [0]
    for seq_len in lod[0]:
        seq_info.append(seq_info[-1] + seq_len)
S
Siddharth Goyal 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
    context_length = wt.shape[0]

    for i in range(num_sequences):  # loop over number of sequences
        start = seq_info[i]
        end = seq_info[i + 1]
        curinput = x[start:end, :]
        curoutput = out[start:end, :]

        cur_timesteps = end - start
        for j in range(cur_timesteps):  # loop over different timesteps
            for k in range(context_length):
                if j + k >= cur_timesteps:
                    continue
                curoutput[j, :] += curinput[j + k, :] * wt[k, :]

    return out


class TestRowConvOp1(OpTest):
    def setUp(self):

        self.op_type = "row_conv"
49 50
        lod = [[2, 3, 2]]
        T = sum(lod[0])
S
Siddharth Goyal 已提交
51
        D = 16
52
        context_length = 8
S
Siddharth Goyal 已提交
53 54 55 56 57 58 59 60 61

        x = np.random.random((T, D)).astype("float32")
        wt = np.random.random((context_length, D)).astype("float32")
        self.inputs = {'X': (x, lod), 'Filter': wt}

        out = row_conv_forward(x, lod, wt)
        self.outputs = {'Out': (out, lod)}

    def test_check_output(self):
H
hong 已提交
62
        self.check_output(check_dygraph=False)
S
Siddharth Goyal 已提交
63 64

    def test_check_grad_normal(self):
65
        self.check_grad(['X', 'Filter'], 'Out', check_dygraph=False)
S
Siddharth Goyal 已提交
66 67

    def test_check_grad_ignore_x(self):
68 69 70
        self.check_grad(
            ['Filter'], 'Out', no_grad_set=set('X'), check_dygraph=False
        )
S
Siddharth Goyal 已提交
71 72

    def test_check_grad_ignore_wt(self):
73 74 75
        self.check_grad(
            ['X'], 'Out', no_grad_set=set('Filter'), check_dygraph=False
        )
S
Siddharth Goyal 已提交
76 77 78 79 80 81


class TestRowConvOp2(OpTest):
    def setUp(self):

        self.op_type = "row_conv"
82 83
        lod = [[20, 30, 50]]
        T = sum(lod[0])
S
Siddharth Goyal 已提交
84 85 86 87 88 89 90 91 92 93 94
        D = 35
        context_length = 35

        x = np.random.random((T, D)).astype("float32")
        wt = np.random.random((context_length, D)).astype("float32")
        self.inputs = {'X': (x, lod), 'Filter': wt}

        out = row_conv_forward(x, lod, wt)
        self.outputs = {'Out': (out, lod)}

    def test_check_output(self):
H
hong 已提交
95
        self.check_output(check_dygraph=False)
S
Siddharth Goyal 已提交
96

97 98 99
    # max_relative_error is increased from 0.05 to 0.06 as for higher
    # dimensional input, the dX on CPU for some values has max_rel_error
    # slightly more than 0.05
S
Siddharth Goyal 已提交
100
    def test_check_grad_normal(self):
101 102 103
        self.check_grad(
            ['X', 'Filter'], 'Out', max_relative_error=0.06, check_dygraph=False
        )
S
Siddharth Goyal 已提交
104 105

    def test_check_grad_ignore_x(self):
106 107 108 109 110 111 112
        self.check_grad(
            ['Filter'],
            'Out',
            max_relative_error=0.06,
            no_grad_set=set('X'),
            check_dygraph=False,
        )
S
Siddharth Goyal 已提交
113 114

    def test_check_grad_ignore_wt(self):
115 116 117 118 119 120 121
        self.check_grad(
            ['X'],
            'Out',
            max_relative_error=0.06,
            no_grad_set=set('Filter'),
            check_dygraph=False,
        )
S
Siddharth Goyal 已提交
122 123


124 125 126 127 128 129
def row_conv_foward_Tensor(x, wt):
    out = np.zeros_like(x)
    num_sequence = x.shape[0]
    timesteps = x.shape[1]
    context_length = wt.shape[0]
    for i in range(num_sequence):
130 131
        cur_in = x[i : i + 1, :][0]
        cur_out = out[i : i + 1, :][0]
132 133 134 135 136 137 138 139 140 141 142
        for j in range(timesteps):
            for k in range(context_length):
                if j + k >= timesteps:
                    continue
                cur_out[j, :] += cur_in[j + k, :] * wt[k, :]
    return out


class TestRowOpWithTensorInput(OpTest):
    def setUp(self):
        self.op_type = "row_conv"
143
        length = [1, 2, 3]
144 145
        B = 2
        T = sum(length)
146 147
        D = 20
        context_length = 6
148 149 150 151 152 153 154 155 156

        x = np.random.random((B, T, D)).astype("float32")
        wt = np.random.random((context_length, D)).astype("float32")
        self.inputs = {'X': x, 'Filter': wt}

        out = row_conv_foward_Tensor(x, wt)
        self.outputs = {'Out': out}

    def test_check_output(self):
H
hong 已提交
157
        self.check_output(check_dygraph=False)
158 159

    def test_check_grad_ignore_x(self):
160 161 162
        self.check_grad(
            ['Filter'], 'Out', no_grad_set=set('X'), check_dygraph=False
        )
163 164

    def test_check_grad_normal(self):
165
        self.check_grad(['X', 'Filter'], 'Out', check_dygraph=False)
166 167

    def test_check_grad_ignore_wt(self):
168 169 170
        self.check_grad(
            ['X'], 'Out', no_grad_set=set('Filter'), check_dygraph=False
        )
171 172


173 174 175 176 177 178 179 180
class TestRowConvLayer(unittest.TestCase):
    def setUp(self):
        self.B = 2
        self.T = 6
        self.C = 20
        self.context_length = 6

        self.x = np.random.random((self.B, self.T, self.C)).astype("float32")
181 182 183
        self.w = np.random.random((self.context_length, self.C)).astype(
            "float32"
        )
184 185 186 187 188 189 190 191 192 193 194
        self.out = row_conv_foward_Tensor(self.x, self.w)

    def check_identity(self):
        start = fluid.Program()
        main = fluid.Program()
        with fluid.unique_name.guard():
            with fluid.program_guard(main, start):
                x = fluid.data("x", (-1, -1, self.C), "float32")
                out = fluid.layers.row_conv(
                    x,
                    self.context_length,
195 196
                    param_attr=fluid.initializer.NumpyArrayInitializer(self.w),
                )
197 198 199
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(start)
200
        (out_np,) = exe.run(main, feed={'x': self.x}, fetch_list=[out])
201 202 203 204

        np.testing.assert_allclose(out_np, self.out)


S
Siddharth Goyal 已提交
205 206
if __name__ == '__main__':
    unittest.main()