test_row_conv_op.py 6.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

S
Siddharth Goyal 已提交
15 16
import unittest
import numpy as np
17
from op_test import OpTest
18
from paddle import fluid
S
Siddharth Goyal 已提交
19 20 21 22


def row_conv_forward(x, lod, wt):
    out = np.zeros_like(x)
23 24 25 26
    num_sequences = len(lod[0])
    seq_info = [0]
    for seq_len in lod[0]:
        seq_info.append(seq_info[-1] + seq_len)
S
Siddharth Goyal 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
    context_length = wt.shape[0]

    for i in range(num_sequences):  # loop over number of sequences
        start = seq_info[i]
        end = seq_info[i + 1]
        curinput = x[start:end, :]
        curoutput = out[start:end, :]

        cur_timesteps = end - start
        for j in range(cur_timesteps):  # loop over different timesteps
            for k in range(context_length):
                if j + k >= cur_timesteps:
                    continue
                curoutput[j, :] += curinput[j + k, :] * wt[k, :]

    return out


class TestRowConvOp1(OpTest):
46

S
Siddharth Goyal 已提交
47 48 49
    def setUp(self):

        self.op_type = "row_conv"
50 51
        lod = [[2, 3, 2]]
        T = sum(lod[0])
S
Siddharth Goyal 已提交
52
        D = 16
53
        context_length = 8
S
Siddharth Goyal 已提交
54 55 56 57 58 59 60 61 62

        x = np.random.random((T, D)).astype("float32")
        wt = np.random.random((context_length, D)).astype("float32")
        self.inputs = {'X': (x, lod), 'Filter': wt}

        out = row_conv_forward(x, lod, wt)
        self.outputs = {'Out': (out, lod)}

    def test_check_output(self):
H
hong 已提交
63
        self.check_output(check_dygraph=False)
S
Siddharth Goyal 已提交
64 65

    def test_check_grad_normal(self):
66
        self.check_grad(['X', 'Filter'], 'Out', check_dygraph=False)
S
Siddharth Goyal 已提交
67 68

    def test_check_grad_ignore_x(self):
69 70 71 72
        self.check_grad(['Filter'],
                        'Out',
                        no_grad_set=set('X'),
                        check_dygraph=False)
S
Siddharth Goyal 已提交
73 74

    def test_check_grad_ignore_wt(self):
75 76 77 78
        self.check_grad(['X'],
                        'Out',
                        no_grad_set=set('Filter'),
                        check_dygraph=False)
S
Siddharth Goyal 已提交
79 80 81


class TestRowConvOp2(OpTest):
82

S
Siddharth Goyal 已提交
83 84 85
    def setUp(self):

        self.op_type = "row_conv"
86 87
        lod = [[20, 30, 50]]
        T = sum(lod[0])
S
Siddharth Goyal 已提交
88 89 90 91 92 93 94 95 96 97 98
        D = 35
        context_length = 35

        x = np.random.random((T, D)).astype("float32")
        wt = np.random.random((context_length, D)).astype("float32")
        self.inputs = {'X': (x, lod), 'Filter': wt}

        out = row_conv_forward(x, lod, wt)
        self.outputs = {'Out': (out, lod)}

    def test_check_output(self):
H
hong 已提交
99
        self.check_output(check_dygraph=False)
S
Siddharth Goyal 已提交
100 101

    #max_relative_error is increased from 0.05 to 0.06 as for higher
102
    #dimensional input, the dX on CPU for some values has max_rel_error
S
Siddharth Goyal 已提交
103 104
    #slightly more than 0.05
    def test_check_grad_normal(self):
105 106 107 108
        self.check_grad(['X', 'Filter'],
                        'Out',
                        max_relative_error=0.06,
                        check_dygraph=False)
S
Siddharth Goyal 已提交
109 110

    def test_check_grad_ignore_x(self):
111 112 113 114 115
        self.check_grad(['Filter'],
                        'Out',
                        max_relative_error=0.06,
                        no_grad_set=set('X'),
                        check_dygraph=False)
S
Siddharth Goyal 已提交
116 117

    def test_check_grad_ignore_wt(self):
118 119 120 121 122
        self.check_grad(['X'],
                        'Out',
                        max_relative_error=0.06,
                        no_grad_set=set('Filter'),
                        check_dygraph=False)
S
Siddharth Goyal 已提交
123 124


125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
def row_conv_foward_Tensor(x, wt):
    out = np.zeros_like(x)
    num_sequence = x.shape[0]
    timesteps = x.shape[1]
    context_length = wt.shape[0]
    for i in range(num_sequence):
        cur_in = x[i:i + 1, :][0]
        cur_out = out[i:i + 1, :][0]
        for j in range(timesteps):
            for k in range(context_length):
                if j + k >= timesteps:
                    continue
                cur_out[j, :] += cur_in[j + k, :] * wt[k, :]
    return out


class TestRowOpWithTensorInput(OpTest):
142

143 144
    def setUp(self):
        self.op_type = "row_conv"
145
        length = [1, 2, 3]
146 147
        B = 2
        T = sum(length)
148 149
        D = 20
        context_length = 6
150 151 152 153 154 155 156 157 158

        x = np.random.random((B, T, D)).astype("float32")
        wt = np.random.random((context_length, D)).astype("float32")
        self.inputs = {'X': x, 'Filter': wt}

        out = row_conv_foward_Tensor(x, wt)
        self.outputs = {'Out': out}

    def test_check_output(self):
H
hong 已提交
159
        self.check_output(check_dygraph=False)
160 161

    def test_check_grad_ignore_x(self):
162 163 164 165
        self.check_grad(['Filter'],
                        'Out',
                        no_grad_set=set('X'),
                        check_dygraph=False)
166 167

    def test_check_grad_normal(self):
168
        self.check_grad(['X', 'Filter'], 'Out', check_dygraph=False)
169 170

    def test_check_grad_ignore_wt(self):
171 172 173 174
        self.check_grad(['X'],
                        'Out',
                        no_grad_set=set('Filter'),
                        check_dygraph=False)
175 176


177
class TestRowConvLayer(unittest.TestCase):
178

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
    def setUp(self):
        self.B = 2
        self.T = 6
        self.C = 20
        self.context_length = 6

        self.x = np.random.random((self.B, self.T, self.C)).astype("float32")
        self.w = np.random.random(
            (self.context_length, self.C)).astype("float32")
        self.out = row_conv_foward_Tensor(self.x, self.w)

    def check_identity(self):
        start = fluid.Program()
        main = fluid.Program()
        with fluid.unique_name.guard():
            with fluid.program_guard(main, start):
                x = fluid.data("x", (-1, -1, self.C), "float32")
                out = fluid.layers.row_conv(
                    x,
                    self.context_length,
                    param_attr=fluid.initializer.NumpyArrayInitializer(self.w))
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(start)
        out_np, = exe.run(main, feed={'x': self.x}, fetch_list=[out])

        np.testing.assert_allclose(out_np, self.out)


S
Siddharth Goyal 已提交
208 209
if __name__ == '__main__':
    unittest.main()