test_pool1d_api.py 14.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

F
From00 已提交
15
import paddle
16
import unittest
F
From00 已提交
17 18 19
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.nn.functional as F
20
import numpy as np
F
From00 已提交
21
from paddle.fluid.framework import _test_eager_guard
22 23 24 25 26 27 28 29 30 31


def adaptive_start_index(index, input_size, output_size):
    return int(np.floor(index * input_size / output_size))


def adaptive_end_index(index, input_size, output_size):
    return int(np.ceil((index + 1) * input_size / output_size))


32 33 34 35 36 37 38 39 40 41 42
def max_pool1D_forward_naive(
    x,
    ksize,
    strides,
    paddings,
    global_pool=0,
    ceil_mode=False,
    exclusive=False,
    adaptive=False,
    data_type=np.float64,
):
43 44 45 46 47 48
    N, C, L = x.shape
    if global_pool == 1:
        ksize = [L]
    if adaptive:
        L_out = ksize[0]
    else:
49 50 51 52 53
        L_out = (
            (L - ksize[0] + 2 * paddings[0] + strides[0] - 1) // strides[0] + 1
            if ceil_mode
            else (L - ksize[0] + 2 * paddings[0]) // strides[0] + 1
        )
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

    out = np.zeros((N, C, L_out))
    for i in range(L_out):
        if adaptive:
            r_start = adaptive_start_index(i, L, ksize[0])
            r_end = adaptive_end_index(i, L, ksize[0])
        else:
            r_start = np.max((i * strides[0] - paddings[0], 0))
            r_end = np.min((i * strides[0] + ksize[0] - paddings[0], L))
        x_masked = x[:, :, r_start:r_end]

        out[:, :, i] = np.max(x_masked, axis=(2))
    return out


69 70 71 72 73 74 75 76 77 78 79
def avg_pool1D_forward_naive(
    x,
    ksize,
    strides,
    paddings,
    global_pool=0,
    ceil_mode=False,
    exclusive=False,
    adaptive=False,
    data_type=np.float64,
):
80 81 82 83 84 85
    N, C, L = x.shape
    if global_pool == 1:
        ksize = [L]
    if adaptive:
        L_out = ksize[0]
    else:
86 87 88 89 90
        L_out = (
            (L - ksize[0] + 2 * paddings[0] + strides[0] - 1) // strides[0] + 1
            if ceil_mode
            else (L - ksize[0] + 2 * paddings[0]) // strides[0] + 1
        )
91 92 93 94 95 96 97 98 99 100 101

    out = np.zeros((N, C, L_out))
    for i in range(L_out):
        if adaptive:
            r_start = adaptive_start_index(i, L, ksize[0])
            r_end = adaptive_end_index(i, L, ksize[0])
        else:
            r_start = np.max((i * strides[0] - paddings[0], 0))
            r_end = np.min((i * strides[0] + ksize[0] - paddings[0], L))
        x_masked = x[:, :, r_start:r_end]

102 103 104
        field_size = (
            (r_end - r_start) if (exclusive or adaptive) else (ksize[0])
        )
105
        if data_type == np.int8 or data_type == np.uint8:
106 107 108
            out[:, :, i] = (
                np.rint(np.sum(x_masked, axis=(2, 3)) / field_size)
            ).astype(data_type)
109
        else:
110 111 112
            out[:, :, i] = (np.sum(x_masked, axis=(2)) / field_size).astype(
                data_type
            )
113 114 115
    return out


C
cnn 已提交
116
class TestPool1D_API(unittest.TestCase):
117 118 119 120 121 122 123 124 125 126 127 128
    def setUp(self):
        np.random.seed(123)
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def check_avg_static_results(self, place):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input = fluid.data(name="input", shape=[2, 3, 32], dtype="float32")
            result = F.avg_pool1d(input, kernel_size=2, stride=2, padding=0)

            input_np = np.random.random([2, 3, 32]).astype("float32")
129 130 131
            result_np = avg_pool1D_forward_naive(
                input_np, ksize=[2], strides=[2], paddings=[0], ceil_mode=False
            )
132 133

            exe = fluid.Executor(place)
134 135 136 137 138
            fetches = exe.run(
                fluid.default_main_program(),
                feed={"input": input_np},
                fetch_list=[result],
            )
139
            np.testing.assert_allclose(fetches[0], result_np, rtol=1e-05)
140 141 142 143 144 145 146

    def check_avg_dygraph_results(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
            result = F.avg_pool1d(input, kernel_size=2, stride=2, padding=[0])

147 148 149
            result_np = avg_pool1D_forward_naive(
                input_np, ksize=[2], strides=[2], paddings=[0]
            )
150

151
            np.testing.assert_allclose(result.numpy(), result_np, rtol=1e-05)
152

153 154 155
            avg_pool1d_dg = paddle.nn.layer.AvgPool1D(
                kernel_size=2, stride=None, padding=0
            )
156
            result = avg_pool1d_dg(input)
157
            np.testing.assert_allclose(result.numpy(), result_np, rtol=1e-05)
158

D
Double_V 已提交
159 160 161 162
    def check_avg_dygraph_padding_results(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
163 164 165 166 167 168 169
            result = F.avg_pool1d(
                input, kernel_size=2, stride=2, padding=[1], exclusive=True
            )

            result_np = avg_pool1D_forward_naive(
                input_np, ksize=[2], strides=[2], paddings=[1], exclusive=False
            )
D
Double_V 已提交
170

171
            np.testing.assert_allclose(result.numpy(), result_np, rtol=1e-05)
D
Double_V 已提交
172

173 174 175
            avg_pool1d_dg = paddle.nn.AvgPool1D(
                kernel_size=2, stride=None, padding=1, exclusive=True
            )
176

D
Double_V 已提交
177
            result = avg_pool1d_dg(input)
178
            np.testing.assert_allclose(result.numpy(), result_np, rtol=1e-05)
D
Double_V 已提交
179

180 181 182 183 184 185
    def check_max_static_results(self, place):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input = fluid.data(name="input", shape=[2, 3, 32], dtype="float32")
            result = F.max_pool1d(input, kernel_size=2, stride=2, padding=[0])

            input_np = np.random.random([2, 3, 32]).astype("float32")
186 187 188
            result_np = max_pool1D_forward_naive(
                input_np, ksize=[2], strides=[2], paddings=[0]
            )
189 190

            exe = fluid.Executor(place)
191 192 193 194 195
            fetches = exe.run(
                fluid.default_main_program(),
                feed={"input": input_np},
                fetch_list=[result],
            )
196
            np.testing.assert_allclose(fetches[0], result_np, rtol=1e-05)
197 198 199 200 201 202 203

    def check_max_dygraph_results(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
            result = F.max_pool1d(input, kernel_size=2, stride=2, padding=0)

204 205 206
            result_np = max_pool1D_forward_naive(
                input_np, ksize=[2], strides=[2], paddings=[0]
            )
207

208
            np.testing.assert_allclose(result.numpy(), result_np, rtol=1e-05)
209

210 211 212
            max_pool1d_dg = paddle.nn.layer.MaxPool1D(
                kernel_size=2, stride=None, padding=0
            )
213
            result = max_pool1d_dg(input)
214
            np.testing.assert_allclose(result.numpy(), result_np, rtol=1e-05)
215

D
Double_V 已提交
216 217 218 219
    def check_max_dygraph_return_index_results(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
220 221 222
            result, index = F.max_pool1d(
                input, kernel_size=2, stride=2, padding=0, return_mask=True
            )
D
Double_V 已提交
223

224 225 226
            result_np = max_pool1D_forward_naive(
                input_np, ksize=[2], strides=[2], paddings=[0]
            )
D
Double_V 已提交
227

228
            np.testing.assert_allclose(result.numpy(), result_np, rtol=1e-05)
D
Double_V 已提交
229

230 231 232
            max_pool1d_dg = paddle.nn.layer.MaxPool1D(
                kernel_size=2, stride=None, padding=0
            )
D
Double_V 已提交
233
            result = max_pool1d_dg(input)
234
            np.testing.assert_allclose(result.numpy(), result_np, rtol=1e-05)
D
Double_V 已提交
235

236 237 238 239
    def check_max_dygraph_padding_same(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
240 241 242
            result = F.max_pool1d(
                input, kernel_size=2, stride=2, padding="SAME"
            )
243

244 245 246
            result_np = max_pool1D_forward_naive(
                input_np, ksize=[2], strides=[2], paddings=[0]
            )
247

248
            np.testing.assert_allclose(result.numpy(), result_np, rtol=1e-05)
249 250 251 252 253

    def check_avg_dygraph_padding_same(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
254 255 256
            result = F.avg_pool1d(
                input, kernel_size=2, stride=2, padding="SAME"
            )
257

258 259 260
            result_np = avg_pool1D_forward_naive(
                input_np, ksize=[2], strides=[2], paddings=[0]
            )
261

262
            np.testing.assert_allclose(result.numpy(), result_np, rtol=1e-05)
263 264 265 266 267 268 269 270 271 272

    def test_pool1d(self):
        for place in self.places:

            self.check_max_dygraph_results(place)
            self.check_avg_dygraph_results(place)
            self.check_max_static_results(place)
            self.check_avg_static_results(place)
            self.check_max_dygraph_padding_same(place)
            self.check_avg_dygraph_padding_same(place)
D
Double_V 已提交
273
            self.check_max_dygraph_return_index_results(place)
274

275
    def test_dygraph_api(self):
F
From00 已提交
276 277 278
        with _test_eager_guard():
            self.test_pool1d()

279

C
cnn 已提交
280
class TestPool2DError_API(unittest.TestCase):
281 282 283
    def test_error_api(self):
        def run1():
            with fluid.dygraph.guard():
284 285 286
                input_np = np.random.uniform(-1, 1, [2, 3, 32]).astype(
                    np.float32
                )
287 288
                input_pd = fluid.dygraph.to_variable(input_np)
                padding = [[2]]
289 290 291
                res_pd = F.max_pool1d(
                    input_pd, kernel_size=2, stride=2, padding=padding
                )
292 293 294 295 296

        self.assertRaises(ValueError, run1)

        def run2():
            with fluid.dygraph.guard():
297 298 299
                input_np = np.random.uniform(-1, 1, [2, 3, 32, 32]).astype(
                    np.float32
                )
300 301
                input_pd = fluid.dygraph.to_variable(input_np)
                padding = [[2]]
302 303 304
                res_pd = F.max_pool1d(
                    input_pd, kernel_size=2, stride=2, padding=padding
                )
305 306 307 308 309

        self.assertRaises(ValueError, run2)

        def run3():
            with fluid.dygraph.guard():
310 311 312
                input_np = np.random.uniform(-1, 1, [2, 3, 32]).astype(
                    np.float32
                )
313 314
                input_pd = fluid.dygraph.to_variable(input_np)
                padding = "padding"
315 316 317
                res_pd = F.max_pool1d(
                    input_pd, kernel_size=2, stride=2, padding=padding
                )
318 319 320 321 322

        self.assertRaises(ValueError, run3)

        def run4():
            with fluid.dygraph.guard():
323 324 325
                input_np = np.random.uniform(-1, 1, [2, 3, 32, 32]).astype(
                    np.float32
                )
326 327
                input_pd = fluid.dygraph.to_variable(input_np)
                padding = "VALID"
328 329 330 331 332 333 334
                res_pd = F.max_pool1d(
                    input_pd,
                    kernel_size=2,
                    stride=2,
                    padding=padding,
                    ceil_mode=True,
                )
335 336 337 338 339

        self.assertRaises(ValueError, run4)

        def run5():
            with fluid.dygraph.guard():
340 341 342
                input_np = np.random.uniform(-1, 1, [2, 3, 32]).astype(
                    np.float32
                )
343 344
                input_pd = fluid.dygraph.to_variable(input_np)
                padding = "VALID"
345 346 347 348 349 350 351
                res_pd = F.max_pool1d(
                    input_pd,
                    kernel_size=2,
                    stride=2,
                    padding=padding,
                    ceil_mode=True,
                )
352 353 354 355 356

        self.assertRaises(ValueError, run5)

        def run6():
            with fluid.dygraph.guard():
357 358 359
                input_np = np.random.uniform(-1, 1, [2, 3, 32]).astype(
                    np.float32
                )
360 361
                input_pd = fluid.dygraph.to_variable(input_np)
                padding = "VALID"
362 363 364 365 366 367 368
                res_pd = F.avg_pool1d(
                    input_pd,
                    kernel_size=2,
                    stride=2,
                    padding=padding,
                    ceil_mode=True,
                )
369 370 371 372 373

        self.assertRaises(ValueError, run6)

        def run7():
            with fluid.dygraph.guard():
374 375 376
                input_np = np.random.uniform(-1, 1, [2, 3, 32]).astype(
                    np.float32
                )
377 378
                input_pd = fluid.dygraph.to_variable(input_np)
                padding = "paddle"
379 380 381 382 383 384 385
                res_pd = F.avg_pool1d(
                    input_pd,
                    kernel_size=2,
                    stride=2,
                    padding=padding,
                    ceil_mode=True,
                )
386 387 388

        self.assertRaises(ValueError, run7)

D
Double_V 已提交
389 390
        def run_kernel_out_of_range():
            with fluid.dygraph.guard():
391 392 393
                input_np = np.random.uniform(-1, 1, [2, 3, 32]).astype(
                    np.float32
                )
D
Double_V 已提交
394 395
                input_pd = fluid.dygraph.to_variable(input_np)
                padding = 0
396 397 398 399 400 401 402
                res_pd = F.avg_pool1d(
                    input_pd,
                    kernel_size=-1,
                    stride=2,
                    padding=padding,
                    ceil_mode=True,
                )
D
Double_V 已提交
403 404 405 406 407

        self.assertRaises(ValueError, run_kernel_out_of_range)

        def run_stride_out_of_range():
            with fluid.dygraph.guard():
408 409 410
                input_np = np.random.uniform(-1, 1, [2, 3, 32]).astype(
                    np.float32
                )
D
Double_V 已提交
411 412
                input_pd = fluid.dygraph.to_variable(input_np)
                padding = 0
413 414 415 416 417 418 419
                res_pd = F.avg_pool1d(
                    input_pd,
                    kernel_size=2,
                    stride=0,
                    padding=padding,
                    ceil_mode=True,
                )
D
Double_V 已提交
420 421 422

        self.assertRaises(ValueError, run_stride_out_of_range)

423
    def test_dygraph_api(self):
F
From00 已提交
424 425 426
        with _test_eager_guard():
            self.test_error_api()

427 428 429

if __name__ == '__main__':
    unittest.main()