test_pool1d_api.py 17.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

F
From00 已提交
15
import paddle
16
import unittest
F
From00 已提交
17 18 19
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.nn.functional as F
20
import numpy as np
F
From00 已提交
21
from paddle.fluid.framework import _test_eager_guard
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46


def adaptive_start_index(index, input_size, output_size):
    return int(np.floor(index * input_size / output_size))


def adaptive_end_index(index, input_size, output_size):
    return int(np.ceil((index + 1) * input_size / output_size))


def max_pool1D_forward_naive(x,
                             ksize,
                             strides,
                             paddings,
                             global_pool=0,
                             ceil_mode=False,
                             exclusive=False,
                             adaptive=False,
                             data_type=np.float64):
    N, C, L = x.shape
    if global_pool == 1:
        ksize = [L]
    if adaptive:
        L_out = ksize[0]
    else:
47 48
        L_out = (L - ksize[0] + 2 * paddings[0] + strides[0] -
                 1) // strides[0] + 1 if ceil_mode else (
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
                     L - ksize[0] + 2 * paddings[0]) // strides[0] + 1

    out = np.zeros((N, C, L_out))
    for i in range(L_out):
        if adaptive:
            r_start = adaptive_start_index(i, L, ksize[0])
            r_end = adaptive_end_index(i, L, ksize[0])
        else:
            r_start = np.max((i * strides[0] - paddings[0], 0))
            r_end = np.min((i * strides[0] + ksize[0] - paddings[0], L))
        x_masked = x[:, :, r_start:r_end]

        out[:, :, i] = np.max(x_masked, axis=(2))
    return out


def avg_pool1D_forward_naive(x,
                             ksize,
                             strides,
                             paddings,
                             global_pool=0,
                             ceil_mode=False,
                             exclusive=False,
                             adaptive=False,
                             data_type=np.float64):
    N, C, L = x.shape
    if global_pool == 1:
        ksize = [L]
    if adaptive:
        L_out = ksize[0]
    else:
80 81
        L_out = (L - ksize[0] + 2 * paddings[0] + strides[0] -
                 1) // strides[0] + 1 if ceil_mode else (
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
                     L - ksize[0] + 2 * paddings[0]) // strides[0] + 1

    out = np.zeros((N, C, L_out))
    for i in range(L_out):
        if adaptive:
            r_start = adaptive_start_index(i, L, ksize[0])
            r_end = adaptive_end_index(i, L, ksize[0])
        else:
            r_start = np.max((i * strides[0] - paddings[0], 0))
            r_end = np.min((i * strides[0] + ksize[0] - paddings[0], L))
        x_masked = x[:, :, r_start:r_end]

        field_size = (r_end - r_start) \
            if (exclusive or adaptive) else (ksize[0])
        if data_type == np.int8 or data_type == np.uint8:
97 98
            out[:, :, i] = (np.rint(np.sum(x_masked, axis=(2, 3)) /
                                    field_size)).astype(data_type)
99
        else:
100 101
            out[:, :,
                i] = (np.sum(x_masked, axis=(2)) / field_size).astype(data_type)
102 103 104
    return out


C
cnn 已提交
105
class TestPool1D_API(unittest.TestCase):
106

107 108 109 110 111 112 113 114 115 116 117 118
    def setUp(self):
        np.random.seed(123)
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def check_avg_static_results(self, place):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input = fluid.data(name="input", shape=[2, 3, 32], dtype="float32")
            result = F.avg_pool1d(input, kernel_size=2, stride=2, padding=0)

            input_np = np.random.random([2, 3, 32]).astype("float32")
119 120 121 122 123
            result_np = avg_pool1D_forward_naive(input_np,
                                                 ksize=[2],
                                                 strides=[2],
                                                 paddings=[0],
                                                 ceil_mode=False)
124 125 126 127 128

            exe = fluid.Executor(place)
            fetches = exe.run(fluid.default_main_program(),
                              feed={"input": input_np},
                              fetch_list=[result])
129
            np.testing.assert_allclose(fetches[0], result_np, rtol=1e-05)
130 131 132 133 134 135 136

    def check_avg_dygraph_results(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
            result = F.avg_pool1d(input, kernel_size=2, stride=2, padding=[0])

137 138 139 140
            result_np = avg_pool1D_forward_naive(input_np,
                                                 ksize=[2],
                                                 strides=[2],
                                                 paddings=[0])
141

142
            np.testing.assert_allclose(result.numpy(), result_np, rtol=1e-05)
143

144 145 146
            avg_pool1d_dg = paddle.nn.layer.AvgPool1D(kernel_size=2,
                                                      stride=None,
                                                      padding=0)
147
            result = avg_pool1d_dg(input)
148
            np.testing.assert_allclose(result.numpy(), result_np, rtol=1e-05)
149

D
Double_V 已提交
150 151 152 153
    def check_avg_dygraph_padding_results(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
154 155 156 157 158 159 160 161 162 163 164
            result = F.avg_pool1d(input,
                                  kernel_size=2,
                                  stride=2,
                                  padding=[1],
                                  exclusive=True)

            result_np = avg_pool1D_forward_naive(input_np,
                                                 ksize=[2],
                                                 strides=[2],
                                                 paddings=[1],
                                                 exclusive=False)
D
Double_V 已提交
165

166
            np.testing.assert_allclose(result.numpy(), result_np, rtol=1e-05)
D
Double_V 已提交
167

168 169 170 171
            avg_pool1d_dg = paddle.nn.AvgPool1D(kernel_size=2,
                                                stride=None,
                                                padding=1,
                                                exclusive=True)
172

D
Double_V 已提交
173
            result = avg_pool1d_dg(input)
174
            np.testing.assert_allclose(result.numpy(), result_np, rtol=1e-05)
D
Double_V 已提交
175

176 177 178 179 180 181
    def check_max_static_results(self, place):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input = fluid.data(name="input", shape=[2, 3, 32], dtype="float32")
            result = F.max_pool1d(input, kernel_size=2, stride=2, padding=[0])

            input_np = np.random.random([2, 3, 32]).astype("float32")
182 183 184 185
            result_np = max_pool1D_forward_naive(input_np,
                                                 ksize=[2],
                                                 strides=[2],
                                                 paddings=[0])
186 187 188 189 190

            exe = fluid.Executor(place)
            fetches = exe.run(fluid.default_main_program(),
                              feed={"input": input_np},
                              fetch_list=[result])
191
            np.testing.assert_allclose(fetches[0], result_np, rtol=1e-05)
192 193 194 195 196 197 198

    def check_max_dygraph_results(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
            result = F.max_pool1d(input, kernel_size=2, stride=2, padding=0)

199 200 201 202
            result_np = max_pool1D_forward_naive(input_np,
                                                 ksize=[2],
                                                 strides=[2],
                                                 paddings=[0])
203

204
            np.testing.assert_allclose(result.numpy(), result_np, rtol=1e-05)
205

206 207 208
            max_pool1d_dg = paddle.nn.layer.MaxPool1D(kernel_size=2,
                                                      stride=None,
                                                      padding=0)
209
            result = max_pool1d_dg(input)
210
            np.testing.assert_allclose(result.numpy(), result_np, rtol=1e-05)
211

D
Double_V 已提交
212 213 214 215
    def check_max_dygraph_return_index_results(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
216 217 218 219 220
            result, index = F.max_pool1d(input,
                                         kernel_size=2,
                                         stride=2,
                                         padding=0,
                                         return_mask=True)
D
Double_V 已提交
221

222 223 224 225
            result_np = max_pool1D_forward_naive(input_np,
                                                 ksize=[2],
                                                 strides=[2],
                                                 paddings=[0])
D
Double_V 已提交
226

227
            np.testing.assert_allclose(result.numpy(), result_np, rtol=1e-05)
D
Double_V 已提交
228

229 230 231
            max_pool1d_dg = paddle.nn.layer.MaxPool1D(kernel_size=2,
                                                      stride=None,
                                                      padding=0)
D
Double_V 已提交
232
            result = max_pool1d_dg(input)
233
            np.testing.assert_allclose(result.numpy(), result_np, rtol=1e-05)
D
Double_V 已提交
234

235 236 237 238
    def check_max_dygraph_padding_same(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
239 240 241 242
            result = F.max_pool1d(input,
                                  kernel_size=2,
                                  stride=2,
                                  padding="SAME")
243

244 245 246 247
            result_np = max_pool1D_forward_naive(input_np,
                                                 ksize=[2],
                                                 strides=[2],
                                                 paddings=[0])
248

249
            np.testing.assert_allclose(result.numpy(), result_np, rtol=1e-05)
250 251 252 253 254

    def check_avg_dygraph_padding_same(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
255 256 257 258
            result = F.avg_pool1d(input,
                                  kernel_size=2,
                                  stride=2,
                                  padding="SAME")
259

260 261 262 263
            result_np = avg_pool1D_forward_naive(input_np,
                                                 ksize=[2],
                                                 strides=[2],
                                                 paddings=[0])
264

265
            np.testing.assert_allclose(result.numpy(), result_np, rtol=1e-05)
266 267 268 269 270 271 272 273 274 275

    def test_pool1d(self):
        for place in self.places:

            self.check_max_dygraph_results(place)
            self.check_avg_dygraph_results(place)
            self.check_max_static_results(place)
            self.check_avg_static_results(place)
            self.check_max_dygraph_padding_same(place)
            self.check_avg_dygraph_padding_same(place)
D
Double_V 已提交
276
            self.check_max_dygraph_return_index_results(place)
277

278
    def test_dygraph_api(self):
F
From00 已提交
279 280 281
        with _test_eager_guard():
            self.test_pool1d()

282

C
cnn 已提交
283
class TestPool2DError_API(unittest.TestCase):
284

285
    def test_error_api(self):
286

287 288 289 290 291 292
        def run1():
            with fluid.dygraph.guard():
                input_np = np.random.uniform(-1, 1,
                                             [2, 3, 32]).astype(np.float32)
                input_pd = fluid.dygraph.to_variable(input_np)
                padding = [[2]]
293 294 295 296
                res_pd = F.max_pool1d(input_pd,
                                      kernel_size=2,
                                      stride=2,
                                      padding=padding)
297 298 299 300 301 302 303 304 305

        self.assertRaises(ValueError, run1)

        def run2():
            with fluid.dygraph.guard():
                input_np = np.random.uniform(-1, 1,
                                             [2, 3, 32, 32]).astype(np.float32)
                input_pd = fluid.dygraph.to_variable(input_np)
                padding = [[2]]
306 307 308 309
                res_pd = F.max_pool1d(input_pd,
                                      kernel_size=2,
                                      stride=2,
                                      padding=padding)
310 311 312 313 314 315 316 317 318

        self.assertRaises(ValueError, run2)

        def run3():
            with fluid.dygraph.guard():
                input_np = np.random.uniform(-1, 1,
                                             [2, 3, 32]).astype(np.float32)
                input_pd = fluid.dygraph.to_variable(input_np)
                padding = "padding"
319 320 321 322
                res_pd = F.max_pool1d(input_pd,
                                      kernel_size=2,
                                      stride=2,
                                      padding=padding)
323 324 325 326 327 328 329 330 331

        self.assertRaises(ValueError, run3)

        def run4():
            with fluid.dygraph.guard():
                input_np = np.random.uniform(-1, 1,
                                             [2, 3, 32, 32]).astype(np.float32)
                input_pd = fluid.dygraph.to_variable(input_np)
                padding = "VALID"
332 333 334 335 336
                res_pd = F.max_pool1d(input_pd,
                                      kernel_size=2,
                                      stride=2,
                                      padding=padding,
                                      ceil_mode=True)
337 338 339 340 341 342 343 344 345

        self.assertRaises(ValueError, run4)

        def run5():
            with fluid.dygraph.guard():
                input_np = np.random.uniform(-1, 1,
                                             [2, 3, 32]).astype(np.float32)
                input_pd = fluid.dygraph.to_variable(input_np)
                padding = "VALID"
346 347 348 349 350
                res_pd = F.max_pool1d(input_pd,
                                      kernel_size=2,
                                      stride=2,
                                      padding=padding,
                                      ceil_mode=True)
351 352 353 354 355 356 357 358 359

        self.assertRaises(ValueError, run5)

        def run6():
            with fluid.dygraph.guard():
                input_np = np.random.uniform(-1, 1,
                                             [2, 3, 32]).astype(np.float32)
                input_pd = fluid.dygraph.to_variable(input_np)
                padding = "VALID"
360 361 362 363 364
                res_pd = F.avg_pool1d(input_pd,
                                      kernel_size=2,
                                      stride=2,
                                      padding=padding,
                                      ceil_mode=True)
365 366 367 368 369 370 371 372 373

        self.assertRaises(ValueError, run6)

        def run7():
            with fluid.dygraph.guard():
                input_np = np.random.uniform(-1, 1,
                                             [2, 3, 32]).astype(np.float32)
                input_pd = fluid.dygraph.to_variable(input_np)
                padding = "paddle"
374 375 376 377 378
                res_pd = F.avg_pool1d(input_pd,
                                      kernel_size=2,
                                      stride=2,
                                      padding=padding,
                                      ceil_mode=True)
379 380 381

        self.assertRaises(ValueError, run7)

D
Double_V 已提交
382 383 384 385 386 387
        def run_kernel_out_of_range():
            with fluid.dygraph.guard():
                input_np = np.random.uniform(-1, 1,
                                             [2, 3, 32]).astype(np.float32)
                input_pd = fluid.dygraph.to_variable(input_np)
                padding = 0
388 389 390 391 392
                res_pd = F.avg_pool1d(input_pd,
                                      kernel_size=-1,
                                      stride=2,
                                      padding=padding,
                                      ceil_mode=True)
D
Double_V 已提交
393 394 395 396 397 398 399 400 401

        self.assertRaises(ValueError, run_kernel_out_of_range)

        def run_stride_out_of_range():
            with fluid.dygraph.guard():
                input_np = np.random.uniform(-1, 1,
                                             [2, 3, 32]).astype(np.float32)
                input_pd = fluid.dygraph.to_variable(input_np)
                padding = 0
402 403 404 405 406
                res_pd = F.avg_pool1d(input_pd,
                                      kernel_size=2,
                                      stride=0,
                                      padding=padding,
                                      ceil_mode=True)
D
Double_V 已提交
407 408 409

        self.assertRaises(ValueError, run_stride_out_of_range)

410
    def test_dygraph_api(self):
F
From00 已提交
411 412 413
        with _test_eager_guard():
            self.test_error_api()

414 415 416

if __name__ == '__main__':
    unittest.main()