test_nn_grad.py 17.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np

18
import paddle
19 20 21 22 23
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.core as core
import gradient_checker
from decorator_helper import prog_scope
24

25
paddle.enable_static()
26 27


28
class TestSliceOpDoubleGradCheck(unittest.TestCase):
29
    @prog_scope()
30 31 32
    def func(self, place):
        self.config()

33 34 35 36 37 38
        out = fluid.layers.slice(
            self.inputs, axes=self.axes, starts=self.starts, ends=self.ends
        )
        gradient_checker.double_grad_check(
            [self.inputs], out, x_init=self.x_arr, place=place
        )
39 40 41 42 43 44

    def config(self):
        self.starts = [1, 0, -1]
        self.ends = [3, 3, 6]
        self.axes = [0, 1, 2]
        self.x_arr = np.random.random([3, 4, 5, 2]).astype("float64")
45 46 47
        self.inputs = layers.create_parameter(
            dtype="float64", shape=[3, 4, 5, 2], name='x'
        )
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for place in places:
            self.func(place)


class TestSliceOpDoubleGradCheckCase3(TestSliceOpDoubleGradCheck):
    def config(self):
        self.starts = [1, -1, 1]
        self.ends = [3, 3, 3]
        self.axes = [0, 1, 2]
        self.x_arr = np.random.random([3, 3, 3]).astype("float64")
63 64 65
        self.inputs = layers.create_parameter(
            dtype="float64", shape=[3, 3, 3], name='x3'
        )
66 67


L
lvmengsi 已提交
68 69 70 71 72 73 74 75 76 77 78 79
class TestReduceMeanWithDimDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        shape = [7, 11]
        eps = 0.05
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        x.persistable = True
        y = layers.reduce_mean(x, dim=0)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)

80 81 82
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
L
lvmengsi 已提交
83 84 85 86 87 88 89 90 91

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


92 93 94 95 96 97 98 99 100 101 102 103
class TestReduceSumWithDimDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        shape = [7, 11]
        eps = 0.05
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        x.persistable = True
        y = layers.reduce_sum(x, dim=0)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)

104 105 106
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
107

108 109 110 111 112 113 114 115
    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


116
class TestReshapeDoubleGradCheck(unittest.TestCase):
L
lilong12 已提交
117 118 119 120 121 122 123 124 125 126 127 128
    @prog_scope()
    def func(self, place):
        x_shape = [3, 12]
        expand_times = [4, 9]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = layers.expand(x, expand_times)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

129 130 131
        gradient_checker.double_grad_check(
            [x], out, x_init=x_arr, place=place, eps=eps
        )
L
lilong12 已提交
132 133 134 135 136 137 138 139 140 141

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestExpandDoubleGradCheck(unittest.TestCase):
142 143 144 145 146 147 148 149 150 151 152 153
    @prog_scope()
    def func(self, place):
        x_shape = [3, 12]
        new_shape = [4, 9]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = layers.reshape(x, new_shape)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

154 155 156
        gradient_checker.double_grad_check(
            [x], out, x_init=x_arr, place=place, eps=eps
        )
157 158 159 160 161 162 163 164 165

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


166
class TestTileDoubleGradCheck(unittest.TestCase):
167 168 169
    def tile_wrapper(self, x):
        return paddle.tile(x[0], [4, 9])

170 171 172 173 174 175 176 177 178 179 180 181
    @prog_scope()
    def func(self, place):
        x_shape = [3, 12]
        repeat_times = [4, 9]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = paddle.tile(x, repeat_times)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

182 183 184 185 186 187
        gradient_checker.double_grad_check(
            [x], out, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.tile_wrapper, [x], out, x_init=x_arr, place=place
        )
188 189 190 191 192 193 194 195 196 197

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestExpandV2DoubleGradCheck(unittest.TestCase):
198 199 200
    def expand_wrapper(self, x):
        return paddle.expand(x[0], [4, 12])

201 202 203 204 205 206 207 208 209 210 211 212
    @prog_scope()
    def func(self, place):
        x_shape = [1, 12]
        new_shape = [4, 12]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = paddle.expand(x, new_shape)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

213 214 215 216 217 218
        gradient_checker.double_grad_check(
            [x], out, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.expand_wrapper, [x], out, x_init=x_arr, place=place
        )
219 220 221 222 223 224 225 226 227

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


228
class TestSqueezeDoubleGradCheck(unittest.TestCase):
229 230 231 232
    def squeeze_warpper(self, x):
        axes = [0, 2]
        return paddle.squeeze(x[0], axes)

233 234 235 236 237 238 239 240 241 242 243 244
    @prog_scope()
    def func(self, place):
        x_shape = [1, 3, 1, 40]
        axes = [0, 2]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = paddle.squeeze(x, axes)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

245 246 247 248 249 250
        gradient_checker.double_grad_check(
            [x], out, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.squeeze_warpper, [x], out, x_init=x_arr, place=place
        )
251 252 253 254 255 256 257 258 259 260

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestUnsqueezeDoubleGradCheck(unittest.TestCase):
261 262 263 264
    def unsqueeze_wrapper(self, x):
        axes = [1, 2]
        return paddle.unsqueeze(x[0], axes)

265 266 267 268 269 270 271 272 273 274 275 276
    @prog_scope()
    def func(self, place):
        x_shape = [3, 40]
        axes = [1, 2]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = paddle.unsqueeze(x, axes)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

277 278 279 280 281 282
        gradient_checker.double_grad_check(
            [x], out, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.unsqueeze_wrapper, [x], out, x_init=x_arr, place=place
        )
283 284 285 286 287 288 289 290 291

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


Q
qingqing01 已提交
292
class TestClipDoubleGradCheck(unittest.TestCase):
293
    def clip_wrapper(self, x):
294
        return paddle.clip(x[0], min=-1.0, max=1.0)
295

Q
qingqing01 已提交
296 297 298 299 300 301 302
    @prog_scope()
    def func(self, place):
        x_shape = [2, 4, 10]
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
303 304
        out = paddle.clip(x, min=-1.0, max=1.0)
        x_arr = np.random.uniform(-5.0, 5.0, x_shape).astype(dtype)
Q
qingqing01 已提交
305 306

        gradient_checker.double_grad_check([x], out, x_init=x_arr, place=place)
307 308 309
        gradient_checker.double_grad_check_for_dygraph(
            self.clip_wrapper, [x], out, x_init=x_arr, place=place
        )
Q
qingqing01 已提交
310 311 312 313 314 315 316 317 318

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
class TestTransposeDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        x_shape = [3, 40]
        perm = [1, 0]
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = paddle.transpose(x, perm)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

        gradient_checker.double_grad_check([x], out, x_init=x_arr, place=place)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestTransposeDoubleGradCheckCase1(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        x_shape = [2, 3, 4, 5]
        perm = [0, 2, 3, 1]
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = paddle.transpose(x, perm)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

        gradient_checker.double_grad_check([x], out, x_init=x_arr, place=place)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


C
ceci3 已提交
363
class TestConstantPadDoubleGradCheck(unittest.TestCase):
364 365 366 367
    def pad_wrapper(self, x):
        pad = [1, 1, 1, 1]
        return paddle.nn.functional.pad(x[0], pad)

C
ceci3 已提交
368 369 370 371 372 373 374 375 376 377 378 379
    @prog_scope()
    def func(self, place):
        x_shape = [2, 3, 4, 5]
        pad = [1, 1, 1, 1]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = paddle.nn.functional.pad(x, pad)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

380 381 382 383 384 385
        gradient_checker.double_grad_check(
            [x], out, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.pad_wrapper, [x], out, x_init=x_arr, place=place
        )
C
ceci3 已提交
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestConstantPadDoubleGradCheckCase1(TestConstantPadDoubleGradCheck):
    @prog_scope()
    def func(self, place):
        x_shape = [2, 3, 4, 5]
        pad = [1, 0, 1, 0, 1, 0, 1, 0]
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = paddle.nn.functional.pad(x, pad)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

        gradient_checker.double_grad_check([x], out, x_init=x_arr, place=place)


class TestConcatDoubleGradCheck(unittest.TestCase):
411 412 413
    def concat_wrapper(self, x):
        return paddle.concat(x, axis=0)

C
ceci3 已提交
414 415 416 417 418 419 420 421 422 423 424 425 426 427
    @prog_scope()
    def func(self, place):
        x_shape = [2, 3, 4, 5]
        pad = [1, 1, 1, 1]
        dtype = np.float64

        x1 = layers.data('x', x_shape, False, dtype)
        x2 = layers.data('x', x_shape, False, dtype)
        x1.persistable = True
        x2.persistable = True
        out = paddle.concat([x1, x2], axis=0)
        x2_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)
        x1_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

428 429 430 431 432 433 434 435 436 437
        gradient_checker.double_grad_check(
            [x1, x2], out, x_init=[x1_arr, x2_arr], place=place
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.concat_wrapper,
            [x1, x2],
            out,
            x_init=[x1_arr, x2_arr],
            place=place,
        )
C
ceci3 已提交
438 439 440 441 442 443 444 445 446

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


447 448 449
class TestAvgPool2DDoubleGradCheckCase1(unittest.TestCase):
    @prog_scope()
    def func(self, place):
450 451 452 453 454 455
        input_NCHW = fluid.layers.data(
            name="input_NCHW",
            shape=[2, 3, 5, 5],
            append_batch_size=False,
            dtype="float32",
        )
456 457 458 459 460

        input_NCHW.persistable = True
        y = layers.pool2d(input_NCHW, pool_size=2, pool_type="avg")
        x_arr = np.random.uniform(-1, 1, [2, 3, 5, 5]).astype(np.float32)

461 462 463
        gradient_checker.double_grad_check(
            [input_NCHW], y, x_init=x_arr, place=place, eps=0.05
        )
464 465 466 467 468 469 470 471 472 473

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestAvgPool2DDoubleGradCheckCase2(unittest.TestCase):
474
    def pool2d_wrapper(self, x):
475 476 477
        return paddle.nn.functional.avg_pool2d(
            x[0], kernel_size=2, data_format="NHWC"
        )
478

479 480
    @prog_scope()
    def func(self, place):
481 482 483 484 485 486
        input_NHWC = fluid.layers.data(
            name="input_NHWC",
            shape=[2, 5, 5, 3],
            append_batch_size=False,
            dtype="float32",
        )
487 488

        input_NHWC.persistable = True
489 490 491
        y = paddle.nn.functional.avg_pool2d(
            input_NHWC, kernel_size=2, data_format="NHWC"
        )
492 493
        x_arr = np.random.uniform(-1, 1, [2, 5, 5, 3]).astype(np.float32)

494 495 496
        gradient_checker.double_grad_check(
            [input_NHWC], y, x_init=x_arr, place=place, eps=0.05
        )
497

498 499 500
        gradient_checker.double_grad_check_for_dygraph(
            self.pool2d_wrapper, [input_NHWC], y, x_init=x_arr, place=place
        )
501

502 503 504 505 506 507 508 509 510
    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestAvgPool2DDoubleGradCheckCase3(unittest.TestCase):
511
    def pool2d_wrapper(self, x):
512 513 514
        return paddle.nn.functional.avg_pool2d(
            x[0], kernel_size=2, padding=[1, 1]
        )
515

516 517
    @prog_scope()
    def func(self, place):
518 519 520 521 522 523
        input_NCHW = fluid.layers.data(
            name="input_NCHW",
            shape=[2, 3, 5, 5],
            append_batch_size=False,
            dtype="float32",
        )
524 525

        input_NCHW.persistable = True
526 527 528
        y = paddle.nn.functional.avg_pool2d(
            input_NCHW, kernel_size=2, padding=[1, 1]
        )
529 530
        x_arr = np.random.uniform(-1, 1, [2, 3, 5, 5]).astype(np.float32)

531 532 533 534 535 536
        gradient_checker.double_grad_check(
            [input_NCHW], y, x_init=x_arr, place=place, eps=0.05
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.pool2d_wrapper, [input_NCHW], y, x_init=x_arr, place=place
        )
537 538 539 540 541 542 543 544 545 546

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestAvgPool2DDoubleGradCheckCase4(unittest.TestCase):
547 548 549
    def pool2d_wrapper(self, x):
        return paddle.nn.functional.avg_pool2d(x[0], kernel_size=[4, 4])

550 551
    @prog_scope()
    def func(self, place):
552 553 554 555 556 557
        input_NCHW = fluid.layers.data(
            name="input_NCHW",
            shape=[2, 3, 5, 5],
            append_batch_size=False,
            dtype="float32",
        )
558 559 560

        input_NCHW.persistable = True
        y = layers.pool2d(input_NCHW, pool_size=[4, 4], pool_type="avg")
561
        y = paddle.nn.functional.avg_pool2d(input_NCHW, kernel_size=[4, 4])
562 563
        x_arr = np.random.uniform(-1, 1, [2, 3, 5, 5]).astype(np.float32)

564 565 566 567 568 569
        gradient_checker.double_grad_check(
            [input_NCHW], y, x_init=x_arr, place=place, eps=0.05
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.pool2d_wrapper, [input_NCHW], y, x_init=x_arr, place=place
        )
570 571 572 573 574 575 576 577 578

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


579 580
if __name__ == "__main__":
    unittest.main()