test_dropout_op.py 44.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import unittest
import numpy as np
K
Kexin Zhao 已提交
17
import paddle.fluid.core as core
18
from op_test import OpTest, skip_check_grad_ci, convert_float_to_uint16
19
import paddle
20
import paddle.static as static
21 22
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
23
from paddle.fluid.framework import _test_eager_guard, _enable_legacy_dygraph
24

25
from paddle import _C_ops
H
hong 已提交
26

27

28
class TestDropoutOp(OpTest):
29
    def setUp(self):
30
        self.op_type = "dropout"
31
        self.inputs = {'X': np.random.random((32, 64)).astype("float32")}
32
        self.attrs = {'dropout_prob': 0.0, 'fix_seed': True, 'is_test': False}
Y
Yu Yang 已提交
33 34
        self.outputs = {
            'Out': self.inputs['X'],
35
            'Mask': np.ones((32, 64)).astype('uint8'),
Y
Yu Yang 已提交
36
        }
37

38 39 40 41
    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
42
        self.check_grad(['X'], 'Out')
43 44


45 46 47
class TestDropoutOpInput1d(OpTest):
    def setUp(self):
        self.op_type = "dropout"
48
        self.inputs = {'X': np.random.random((2000,)).astype("float32")}
49 50 51
        self.attrs = {'dropout_prob': 0.0, 'fix_seed': True, 'is_test': False}
        self.outputs = {
            'Out': self.inputs['X'],
52
            'Mask': np.ones((2000)).astype('uint8'),
53 54 55 56 57 58 59 60 61
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['X'], 'Out')


62
class TestDropoutOp2(TestDropoutOp):
63
    def setUp(self):
64
        self.op_type = "dropout"
65
        self.inputs = {'X': np.random.random((32, 64)).astype("float32")}
66
        self.attrs = {'dropout_prob': 1.0, 'fix_seed': True, 'is_test': False}
Y
Yu Yang 已提交
67 68
        self.outputs = {
            'Out': np.zeros((32, 64)).astype('float32'),
69
            'Mask': np.zeros((32, 64)).astype('uint8'),
Y
Yu Yang 已提交
70
        }
71 72


73
class TestDropoutOp3(TestDropoutOp):
74
    def setUp(self):
75 76
        self.op_type = "dropout"
        self.inputs = {'X': np.random.random((32, 64, 2)).astype("float32")}
77
        self.attrs = {'dropout_prob': 0.0, 'fix_seed': True, 'is_test': False}
Y
Yu Yang 已提交
78 79
        self.outputs = {
            'Out': self.inputs['X'],
80
            'Mask': np.ones((32, 64, 2)).astype('uint8'),
Y
Yu Yang 已提交
81
        }
82 83


84
@skip_check_grad_ci(reason="For inference, check_grad is not required.")
85 86 87 88
class TestDropoutOp4(OpTest):
    def setUp(self):
        self.op_type = "dropout"
        self.inputs = {'X': np.random.random((32, 64)).astype("float32")}
89
        self.attrs = {'dropout_prob': 0.35, 'fix_seed': True, 'is_test': True}
90 91 92
        self.outputs = {
            'Out': self.inputs['X'] * (1.0 - self.attrs['dropout_prob'])
        }
93 94 95 96 97

    def test_check_output(self):
        self.check_output()


98
@skip_check_grad_ci(reason="For inference, check_grad is not required.")
99 100 101 102
class TestDropoutOp5(OpTest):
    def setUp(self):
        self.op_type = "dropout"
        self.inputs = {'X': np.random.random((32, 64, 3)).astype("float32")}
103
        self.attrs = {'dropout_prob': 0.75, 'is_test': True}
104 105 106
        self.outputs = {
            'Out': self.inputs['X'] * (1.0 - self.attrs['dropout_prob'])
        }
107 108

    def test_check_output(self):
P
phlrain 已提交
109 110 111 112 113 114 115 116 117 118 119
        self.check_output()


class TestDropoutOp6(TestDropoutOp):
    def setUp(self):
        self.op_type = "dropout"
        self.inputs = {'X': np.random.random((32, 64)).astype("float32")}
        self.attrs = {
            'dropout_prob': 1.0,
            'fix_seed': True,
            'is_test': False,
120
            'dropout_implementation': 'upscale_in_train',
P
phlrain 已提交
121 122 123
        }
        self.outputs = {
            'Out': np.zeros((32, 64)).astype('float32'),
124
            'Mask': np.zeros((32, 64)).astype('uint8'),
P
phlrain 已提交
125 126 127 128 129 130 131 132 133 134 135
        }


class TestDropoutOp7(TestDropoutOp):
    def setUp(self):
        self.op_type = "dropout"
        self.inputs = {'X': np.random.random((32, 64, 2)).astype("float32")}
        self.attrs = {
            'dropout_prob': 0.0,
            'fix_seed': True,
            'is_test': False,
136
            'dropout_implementation': 'upscale_in_train',
P
phlrain 已提交
137 138 139
        }
        self.outputs = {
            'Out': self.inputs['X'],
140
            'Mask': np.ones((32, 64, 2)).astype('uint8'),
P
phlrain 已提交
141 142 143
        }


144
@skip_check_grad_ci(reason="For inference, check_grad is not required.")
P
phlrain 已提交
145 146 147 148 149 150 151 152
class TestDropoutOp8(OpTest):
    def setUp(self):
        self.op_type = "dropout"
        self.inputs = {'X': np.random.random((32, 64)).astype("float32")}
        self.attrs = {
            'dropout_prob': 0.35,
            'fix_seed': True,
            'is_test': True,
153
            'dropout_implementation': 'upscale_in_train',
P
phlrain 已提交
154 155 156 157 158 159 160
        }
        self.outputs = {'Out': self.inputs['X']}

    def test_check_output(self):
        self.check_output()


161
@skip_check_grad_ci(reason="For inference, check_grad is not required.")
P
phlrain 已提交
162 163 164 165 166 167 168
class TestDropoutOp9(OpTest):
    def setUp(self):
        self.op_type = "dropout"
        self.inputs = {'X': np.random.random((32, 64, 3)).astype("float32")}
        self.attrs = {
            'dropout_prob': 0.75,
            'is_test': True,
169
            'dropout_implementation': 'upscale_in_train',
P
phlrain 已提交
170 171 172 173
        }
        self.outputs = {'Out': self.inputs['X']}

    def test_check_output(self):
174 175 176
        self.check_output()


M
mapingshuo 已提交
177 178 179 180 181
class TestDropoutOpWithSeed(OpTest):
    def setUp(self):
        self.op_type = "dropout"
        self.inputs = {
            "X": np.random.random((32, 64)).astype("float32"),
182
            "Seed": np.asarray([125], dtype="int32"),
183 184 185
        }
        self.attrs = {
            'dropout_prob': 0.0,
M
mapingshuo 已提交
186 187 188
        }
        self.outputs = {
            'Out': self.inputs['X'],
189
            'Mask': np.ones((32, 64)).astype('uint8'),
M
mapingshuo 已提交
190 191 192 193 194 195 196 197 198
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['X'], 'Out', max_relative_error=0.05)


199 200 201 202
@unittest.skipIf(
    not core.is_compiled_with_cuda() or not core.op_support_gpu("dropout"),
    "core is not compiled with CUDA or core is not support dropout",
)
203
@skip_check_grad_ci(reason="For inference, check_grad is not required.")
K
Kexin Zhao 已提交
204
class TestFP16DropoutOp(OpTest):
K
Kexin Zhao 已提交
205 206
    def setUp(self):
        self.op_type = "dropout"
K
Kexin Zhao 已提交
207 208 209 210
        self.init_test_case()

        x = np.random.random(self.input_size).astype("float16")
        out = x * (1.0 - self.prob)
K
Kexin Zhao 已提交
211
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
K
Kexin Zhao 已提交
212 213 214
        self.attrs = {
            'dropout_prob': self.prob,
            'fix_seed': self.fix_seed,
215
            'is_test': True,
K
Kexin Zhao 已提交
216
        }
217
        self.outputs = {'Out': out}
K
Kexin Zhao 已提交
218

K
Kexin Zhao 已提交
219 220 221 222 223
    def init_test_case(self):
        self.input_size = [32, 64]
        self.prob = 0.35
        self.fix_seed = True

K
Kexin Zhao 已提交
224
    def test_check_output(self):
225
        self.check_output_with_place(core.CUDAPlace(0), atol=1e-3)
K
Kexin Zhao 已提交
226 227


228 229 230 231
@unittest.skipIf(
    not core.is_compiled_with_cuda() or not core.op_support_gpu("dropout"),
    "core is not compiled with CUDA or core is not support dropout",
)
232
@skip_check_grad_ci(reason="For inference, check_grad is not required.")
K
Kexin Zhao 已提交
233 234 235 236 237
class TestFP16DropoutOp2(TestFP16DropoutOp):
    def init_test_case(self):
        self.input_size = [32, 64, 3]
        self.prob = 0.75
        self.fix_seed = False
K
Kexin Zhao 已提交
238 239


240 241 242 243 244 245 246 247 248
class TestBF16DropoutOp(OpTest):
    def setUp(self):
        self.op_type = "dropout"
        self.dtype = np.uint16

        x = np.random.random((32, 64)).astype("float32")
        self.inputs = {'X': convert_float_to_uint16(x)}
        self.attrs = {'dropout_prob': 1.0, 'fix_seed': True, 'is_test': False}
        self.outputs = {
249 250 251 252
            'Out': convert_float_to_uint16(
                np.zeros((32, 64)).astype('float32')
            ),
            'Mask': np.zeros((32, 64)).astype('uint8'),
253 254 255 256 257 258 259 260 261
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['X'], 'Out')


262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
class TestDropoutOpWithSeedOnCPUPlace(unittest.TestCase):
    def test_seed_cpu_place(self):
        paddle.enable_static()
        main_program = Program()
        with program_guard(main_program):
            seed_input_name = "tensor@SeedInput"
            x_var_name = "tensor@X"
            x_out_var = "tensor@XOut"

            mask_var_name = "tensor@Mask"
            seed_input_var = main_program.global_block().create_var(
                name=seed_input_name,
                shape=[1],
                dtype='int32',
                persistable=False,
277 278
                stop_gradient=True,
            )
279 280 281 282 283
            x_out_var = main_program.global_block().create_var(
                name=x_out_var,
                shape=[40, 40],
                dtype='float32',
                persistable=False,
284 285 286 287 288 289 290 291 292
                stop_gradient=True,
            )
            x_var = main_program.global_block().create_var(
                name=x_var_name,
                shape=[40, 40],
                dtype='float32',
                persistable=False,
                stop_gradient=True,
            )
293 294 295 296 297
            mask_var = main_program.global_block().create_var(
                name=mask_var_name,
                shape=[1],
                dtype='int',
                persistable=False,
298 299 300 301 302 303 304 305 306 307 308 309 310
                stop_gradient=True,
            )

            main_program.global_block().append_op(
                type="fill_constant",
                outputs={"Out": x_var_name},
                attrs={
                    "shape": [40, 40],
                    "dtype": x_var.dtype,
                    "value": 1.0,
                    "place_type": 0,
                },
            )
311 312 313 314
            main_program.global_block().append_op(
                type='seed',
                inputs={},
                outputs={'Out': seed_input_var},
315 316 317 318 319 320 321 322
                attrs={'seed': 1, 'force_cpu': True},
            )
            main_program.global_block().append_op(
                type='dropout',
                inputs={'X': x_var, 'Seed': seed_input_var},
                attrs={'dropout_prob': 0.0},
                outputs={'Out': x_out_var, 'Mask': mask_var},
            )
323 324 325 326 327 328 329
            place = fluid.CPUPlace()
            if core.is_compiled_with_cuda():
                place = fluid.CUDAPlace(0)
            exe = fluid.Executor(place)
            x_out, mask_out = exe.run(
                main_program,
                feed={},
330 331
                fetch_list=[x_out_var.name, mask_var.name],
            )
332
            x_in_np = np.ones([40, 40]).astype("float32")
333
            np.testing.assert_allclose(x_out, x_in_np, rtol=1e-05)
334 335


336
class TestDropoutOpError(unittest.TestCase):
337 338 339 340 341
    def test_errors(self):
        with program_guard(Program(), Program()):

            def test_Variable():
                # the input of dropout must be Variable.
342 343 344
                x1 = fluid.create_lod_tensor(
                    np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace()
                )
345 346 347 348 349 350 351
                fluid.layers.dropout(x1, dropout_prob=0.5)

            self.assertRaises(TypeError, test_Variable)

            def test_dtype():
                # the input dtype of dropout must be float16 or float32 or float64
                # float16 only can be set on GPU place
352 353 354
                x2 = fluid.layers.data(
                    name='x2', shape=[3, 4, 5, 6], dtype="int32"
                )
355 356 357 358 359
                fluid.layers.dropout(x2, dropout_prob=0.5)

            self.assertRaises(TypeError, test_dtype)


360 361 362 363 364 365 366 367 368
class TestDropoutFAPI(unittest.TestCase):
    def setUp(self):
        np.random.seed(123)
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def check_static_result(self, place):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
369
            input = fluid.data(name="input", shape=[-1, -1], dtype="float32")
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
            res1 = paddle.nn.functional.dropout(x=input, p=0.0, training=False)
            res2 = paddle.nn.functional.dropout(
                x=input, p=0.0, axis=0, training=True, mode='upscale_in_train'
            )
            res3 = paddle.nn.functional.dropout(
                x=input, p=0.0, axis=0, training=True, mode='downscale_in_infer'
            )
            res4 = paddle.nn.functional.dropout(
                x=input, p=0.0, axis=0, training=False, mode='upscale_in_train'
            )
            res5 = paddle.nn.functional.dropout(
                x=input,
                p=0.0,
                axis=0,
                training=False,
                mode='downscale_in_infer',
            )
            res6 = paddle.nn.functional.dropout(
                x=input,
                p=0.0,
                axis=[0, 1],
                training=True,
                mode='upscale_in_train',
            )
            res7 = paddle.nn.functional.dropout(
                x=input,
                p=0.0,
                axis=[0, 1],
                training=True,
                mode='downscale_in_infer',
            )
            res8 = paddle.nn.functional.dropout(
                x=input,
                p=0.0,
                axis=[0, 1],
                training=False,
                mode='upscale_in_train',
            )
            res9 = paddle.nn.functional.dropout(
                x=input,
                p=0.0,
                axis=[0, 1],
                training=False,
                mode='downscale_in_infer',
            )
            res10 = paddle.nn.functional.dropout(x=input, p=1.0, training=True)
            res11 = paddle.fluid.layers.dropout(x=input, dropout_prob=0.0)
            res12 = paddle.nn.functional.dropout(
                x=input,
                p=0.0,
                axis=(0, 1),
                training=False,
                mode='upscale_in_train',
            )

            res13 = paddle.nn.functional.dropout(
                x=input, p=0.7, axis=1, training=True, mode='upscale_in_train'
            )
428 429

            in_np = np.ones([40, 40]).astype("float32")
430 431 432 433
            res_np = in_np
            res_np2 = np.zeros_like(in_np)

            exe = fluid.Executor(place)
434
            res_list = [
435 436 437 438 439 440 441 442 443 444 445
                res1,
                res2,
                res3,
                res4,
                res5,
                res6,
                res7,
                res8,
                res9,
                res11,
                res12,
446
            ]
447
            for res in res_list:
448 449 450 451 452
                fetches = exe.run(
                    fluid.default_main_program(),
                    feed={"input": in_np},
                    fetch_list=[res],
                )
453
                np.testing.assert_allclose(fetches[0], res_np, rtol=1e-05)
454 455 456 457 458
            fetches2 = exe.run(
                fluid.default_main_program(),
                feed={"input": in_np},
                fetch_list=[res10],
            )
459
            np.testing.assert_allclose(fetches2[0], res_np2, rtol=1e-05)
460 461 462 463 464
            fetches3 = exe.run(
                fluid.default_main_program(),
                feed={"input": in_np},
                fetch_list=[res13],
            )
465 466 467 468 469 470 471 472 473 474 475 476 477

    def test_static(self):
        for place in self.places:
            self.check_static_result(place=place)

    def test_dygraph(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                in_np = np.random.random([40, 40]).astype("float32")
                res_np = in_np
                res_np2 = np.zeros_like(in_np)
                input = fluid.dygraph.to_variable(in_np)

478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
                res1 = paddle.nn.functional.dropout(
                    x=input, p=0.0, training=False
                )
                res2 = paddle.nn.functional.dropout(
                    x=input,
                    p=0.0,
                    axis=0,
                    training=True,
                    mode='upscale_in_train',
                )
                res3 = paddle.nn.functional.dropout(
                    x=input,
                    p=0.0,
                    axis=0,
                    training=True,
                    mode='downscale_in_infer',
                )
                res4 = paddle.nn.functional.dropout(
                    x=input,
                    p=0.0,
                    axis=0,
                    training=False,
                    mode='upscale_in_train',
                )
                res5 = paddle.nn.functional.dropout(
                    x=input,
                    p=0.0,
                    axis=0,
                    training=False,
                    mode='downscale_in_infer',
                )
                res6 = paddle.nn.functional.dropout(
                    x=input,
                    p=0.0,
                    axis=[0, 1],
                    training=True,
                    mode='upscale_in_train',
                )
                res7 = paddle.nn.functional.dropout(
                    x=input,
                    p=0.0,
                    axis=[0, 1],
                    training=True,
                    mode='downscale_in_infer',
                )
                res8 = paddle.nn.functional.dropout(
                    x=input,
                    p=0.0,
                    axis=[0, 1],
                    training=False,
                    mode='upscale_in_train',
                )
                res9 = paddle.nn.functional.dropout(
                    x=input,
                    p=0.0,
                    axis=[0, 1],
                    training=False,
                    mode='downscale_in_infer',
                )
                res10 = paddle.nn.functional.dropout(
                    x=input, p=1.0, training=True
                )
                dropout = paddle.fluid.dygraph.Dropout(
                    p=0,
                )
543
                res11 = dropout(input)
544 545 546 547 548 549 550 551 552 553 554 555 556 557
                res12 = paddle.nn.functional.dropout(
                    x=input,
                    p=0.0,
                    axis=(0, 1),
                    training=False,
                    mode='upscale_in_train',
                )
                res13 = paddle.nn.functional.dropout(
                    x=input,
                    p=0.5,
                    axis=1,
                    training=True,
                    mode='upscale_in_train',
                )
558

559
            res_list = [
560 561 562 563 564 565 566 567 568 569 570
                res1,
                res2,
                res3,
                res4,
                res5,
                res6,
                res7,
                res8,
                res9,
                res11,
                res12,
571
            ]
572
            for res in res_list:
573 574
                np.testing.assert_allclose(res.numpy(), res_np, rtol=1e-05)
            np.testing.assert_allclose(res10.numpy(), res_np2, rtol=1e-05)
575 576 577 578 579 580 581 582


class TestDropoutFAPIError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):

            def test_Variable():
                # the input of dropout must be Variable.
583 584 585
                x1 = fluid.create_lod_tensor(
                    np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace()
                )
586 587 588 589 590 591
                paddle.nn.functional.dropout(x1, p=0.5)

            self.assertRaises(TypeError, test_Variable)

            def test_Variable2():
                # the input of dropout must be Variable.
592 593 594
                x1 = fluid.create_lod_tensor(
                    np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace()
                )
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
                paddle.nn.functional.dropout(x1, p=0.5, axis=0)

            self.assertRaises(TypeError, test_Variable2)

            def test_dtype():
                # the input dtype of dropout must be float32 or float64
                # float16 only can be set on GPU place
                xr = fluid.data(name='xr', shape=[3, 4, 5, 6], dtype="int32")
                paddle.nn.functional.dropout(xr, p=0.5)

            self.assertRaises(TypeError, test_dtype)

            def test_pdtype():
                # p should be int or float
                x2 = fluid.data(name='x2', shape=[3, 4, 5, 6], dtype="float32")
                paddle.nn.functional.dropout(x2, p='0.5')

            self.assertRaises(TypeError, test_pdtype)

            def test_pvalue():
                # p should be 0.<=p<=1.
                x2 = fluid.data(name='x2', shape=[3, 4, 5, 6], dtype="float32")
                paddle.nn.functional.dropout(x2, p=1.2)

            self.assertRaises(ValueError, test_pvalue)

            def test_mode():
                # mode should be 'downscale_in_infer' or 'upscale_in_train'
                x2 = fluid.data(name='x2', shape=[3, 4, 5, 6], dtype="float32")
                paddle.nn.functional.dropout(x2, mode='abc')

            self.assertRaises(ValueError, test_mode)

            def test_axis():
                # axis should be int or list
                x2 = fluid.data(name='x2', shape=[3, 4, 5, 6], dtype="float32")
                paddle.nn.functional.dropout(x2, axis=1.2)

            self.assertRaises(TypeError, test_axis)

            def test_axis_max():
                # maximum of axis should less than dimensions of x
                x2 = fluid.data(name='x2', shape=[3, 4, 5, 6], dtype="float32")
                paddle.nn.functional.dropout(x2, axis=[0, 5])

            self.assertRaises(ValueError, test_axis_max)

642 643 644 645 646 647 648
            def test_axis_min():
                # minimum of axis should greater equal than 0
                x2 = fluid.data(name='x2', shape=[3, 4, 5, 6], dtype="float32")
                paddle.nn.functional.dropout(x2, axis=[0, -1])

            self.assertRaises(ValueError, test_axis_min)

649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
            def test_axis_len():
                # length of axis should not greater than dimensions of x
                x2 = fluid.data(name='x2', shape=[3, 4, 5, 6], dtype="float32")
                paddle.nn.functional.dropout(x2, axis=[0, 1, 2, 3, 4])

            self.assertRaises(ValueError, test_axis_len)


class TestDropoutCAPI(unittest.TestCase):
    def setUp(self):
        np.random.seed(123)
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def test_dygraph(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                input_np = np.random.random([40, 40]).astype("float32")
                result_np = input_np
                input = fluid.dygraph.to_variable(input_np)
670
                m = paddle.nn.Dropout(p=0.0)
671 672
                m.eval()
                result = m(input)
673 674 675
                np.testing.assert_allclose(
                    result.numpy(), result_np, rtol=1e-05
                )
676 677


C
cnn 已提交
678
class TestDropout2DFAPI(unittest.TestCase):
679 680 681 682 683 684 685 686
    def setUp(self):
        np.random.seed(123)
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def check_static_result(self, place):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
687 688 689 690 691 692 693 694 695
            input = fluid.data(
                name="input", shape=[2, 3, 4, 5], dtype="float32"
            )
            res1 = paddle.nn.functional.dropout2d(
                x=input, p=0.0, training=False, data_format='NCHW'
            )
            res2 = paddle.nn.functional.dropout2d(
                x=input, p=0.0, training=False, data_format='NHWC'
            )
696 697 698 699 700 701 702

            in_np = np.random.random([2, 3, 4, 5]).astype("float32")
            res_np = in_np

            exe = fluid.Executor(place)
            res_list = [res1, res2]
            for res in res_list:
703 704 705 706 707
                fetches = exe.run(
                    fluid.default_main_program(),
                    feed={"input": in_np},
                    fetch_list=[res],
                )
708
                np.testing.assert_allclose(fetches[0], res_np, rtol=1e-05)
709 710 711 712 713 714 715 716 717 718 719 720

    def test_static(self):
        for place in self.places:
            self.check_static_result(place=place)

    def test_dygraph(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                in_np = np.random.random([2, 3, 4, 5]).astype("float32")
                res_np = in_np
                input = fluid.dygraph.to_variable(in_np)

721 722 723 724 725 726
                res1 = paddle.nn.functional.dropout2d(
                    x=input, p=0.0, training=False, data_format='NCHW'
                )
                res2 = paddle.nn.functional.dropout2d(
                    x=input, p=0.0, training=False, data_format='NHWC'
                )
727 728 729

            res_list = [res1, res2]
            for res in res_list:
730
                np.testing.assert_allclose(res.numpy(), res_np, rtol=1e-05)
731 732


C
cnn 已提交
733
class TestDropout2DFAPIError(unittest.TestCase):
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
    def test_errors(self):
        with program_guard(Program(), Program()):

            def test_xdim():
                # dimentions of x should be 4
                x = fluid.data(name='x1', shape=[2, 3, 4, 5, 6], dtype="int32")
                paddle.nn.functional.dropout2d(x)

            self.assertRaises(ValueError, test_xdim)

            def test_dataformat():
                # data_format should be 'NCHW' or 'NHWC'
                x = fluid.data(name='x2', shape=[2, 3, 4, 5], dtype="int32")
                paddle.nn.functional.dropout2d(x, data_format='CNHW')

            self.assertRaises(ValueError, test_dataformat)


C
cnn 已提交
752
class TestDropout2DCAPI(unittest.TestCase):
753 754 755 756 757 758 759 760 761 762 763 764
    def setUp(self):
        np.random.seed(123)
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def test_dygraph(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                input_np = np.random.random([2, 3, 4, 5]).astype("float32")
                result_np = input_np
                input = fluid.dygraph.to_variable(input_np)
765
                m = paddle.nn.Dropout2D(p=0.0)
766 767
                m.eval()
                result = m(input)
768 769 770
                np.testing.assert_allclose(
                    result.numpy(), result_np, rtol=1e-05
                )
771 772


C
cnn 已提交
773
class TestDropout3DFAPI(unittest.TestCase):
774 775 776 777 778 779 780 781
    def setUp(self):
        np.random.seed(123)
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def check_static_result(self, place):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
782 783 784 785 786 787 788 789 790
            input = fluid.data(
                name="input", shape=[2, 3, 4, 5, 6], dtype="float32"
            )
            res1 = paddle.nn.functional.dropout3d(
                x=input, p=0.0, training=False, data_format='NCDHW'
            )
            res2 = paddle.nn.functional.dropout3d(
                x=input, p=0.0, training=False, data_format='NDHWC'
            )
791 792 793 794 795 796 797

            in_np = np.random.random([2, 3, 4, 5, 6]).astype("float32")
            res_np = in_np

            exe = fluid.Executor(place)
            res_list = [res1, res2]
            for res in res_list:
798 799 800 801 802
                fetches = exe.run(
                    fluid.default_main_program(),
                    feed={"input": in_np},
                    fetch_list=[res],
                )
803
                np.testing.assert_allclose(fetches[0], res_np, rtol=1e-05)
804 805 806 807 808 809 810 811 812 813 814 815

    def test_static(self):
        for place in self.places:
            self.check_static_result(place=place)

    def test_dygraph(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                in_np = np.random.random([2, 3, 4, 5, 6]).astype("float32")
                res_np = in_np
                input = fluid.dygraph.to_variable(in_np)

816 817 818 819 820 821
                res1 = paddle.nn.functional.dropout3d(
                    x=input, p=0.0, training=False, data_format='NCDHW'
                )
                res2 = paddle.nn.functional.dropout3d(
                    x=input, p=0.0, training=False, data_format='NDHWC'
                )
822 823 824

            res_list = [res1, res2]
            for res in res_list:
825
                np.testing.assert_allclose(res.numpy(), res_np, rtol=1e-05)
826 827


C
cnn 已提交
828
class TestDropout3DFAPIError(unittest.TestCase):
829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
    def test_errors(self):
        with program_guard(Program(), Program()):

            def test_xdim():
                # dimentions of x should be 5
                x = fluid.data(name='x1', shape=[2, 3, 4, 5], dtype="int32")
                paddle.nn.functional.dropout3d(x)

            self.assertRaises(ValueError, test_xdim)

            def test_dataformat():
                # data_format should be 'NCDHW' or 'NDHWC'
                x = fluid.data(name='x2', shape=[2, 3, 4, 5, 6], dtype="int32")
                paddle.nn.functional.dropout3d(x, data_format='CNDHW')

            self.assertRaises(ValueError, test_dataformat)


C
cnn 已提交
847
class TestDropout3DCAPI(unittest.TestCase):
848 849 850 851 852 853 854 855 856 857 858 859
    def setUp(self):
        np.random.seed(123)
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def test_dygraph(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                input_np = np.random.random([2, 3, 4, 5, 6]).astype("float32")
                result_np = input_np
                input = fluid.dygraph.to_variable(input_np)
860
                m = paddle.nn.Dropout3D(p=0.0)
861 862
                m.eval()
                result = m(input)
863 864 865
                np.testing.assert_allclose(
                    result.numpy(), result_np, rtol=1e-05
                )
866 867


868 869 870 871 872 873 874 875 876 877
class TestAlphaDropoutFAPI(unittest.TestCase):
    def setUp(self):
        np.random.seed(123)
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def check_static_result(self, place):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input = fluid.data(name="input", shape=[40, 40], dtype="float32")
878 879 880 881 882
            res1 = paddle.nn.functional.alpha_dropout(x=input, p=0.0)
            res2 = paddle.nn.functional.alpha_dropout(
                x=input, p=0.0, training=False
            )
            res3 = paddle.nn.functional.alpha_dropout(x=input, p=1.0)
883 884 885

            in_np = np.random.random([40, 40]).astype("float32")
            res_np = in_np
886
            res_np3 = np.zeros_like(in_np)
887 888 889 890

            exe = fluid.Executor(place)
            res_list = [res1, res2]
            for res in res_list:
891 892 893 894 895
                fetches = exe.run(
                    fluid.default_main_program(),
                    feed={"input": in_np},
                    fetch_list=[res],
                )
896
                np.testing.assert_allclose(fetches[0], res_np, rtol=1e-05)
897 898 899 900 901
            fetches = exe.run(
                fluid.default_main_program(),
                feed={"input": in_np},
                fetch_list=[res3],
            )
902
            np.testing.assert_allclose(fetches[0], res_np3, rtol=1e-05)
903 904 905 906 907 908 909 910 911 912

    def test_static(self):
        for place in self.places:
            self.check_static_result(place=place)

    def test_dygraph(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                in_np = np.random.random([40, 40]).astype("float32")
                res_np = in_np
913
                res_np3 = np.zeros_like(in_np)
914 915
                input = fluid.dygraph.to_variable(in_np)

916 917 918 919 920
                res1 = paddle.nn.functional.alpha_dropout(x=input, p=0.0)
                res2 = paddle.nn.functional.alpha_dropout(
                    x=input, p=0.0, training=False
                )
                res3 = paddle.nn.functional.alpha_dropout(x=input, p=1.0)
921 922 923

            res_list = [res1, res2]
            for res in res_list:
924 925
                np.testing.assert_allclose(res.numpy(), res_np, rtol=1e-05)
            np.testing.assert_allclose(res3.numpy(), res_np3, rtol=1e-05)
926 927 928 929 930 931 932 933


class TestAlphaDropoutFAPIError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):

            def test_Variable():
                # the input of dropout must be Variable.
934 935 936
                x1 = fluid.create_lod_tensor(
                    np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace()
                )
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
                paddle.nn.functional.alpha_dropout(x1, p=0.5)

            self.assertRaises(TypeError, test_Variable)

            def test_dtype():
                # the input dtype of dropout must be float32 or float64
                xr = fluid.data(name='xr', shape=[3, 4, 5, 6], dtype="int32")
                paddle.nn.functional.alpha_dropout(xr)

            self.assertRaises(TypeError, test_dtype)

            def test_pdtype():
                # p should be int or float
                x2 = fluid.data(name='x2', shape=[3, 4, 5, 6], dtype="float32")
                paddle.nn.functional.alpha_dropout(x2, p='0.5')

            self.assertRaises(TypeError, test_pdtype)

            def test_pvalue():
                # p should be 0.<=p<=1.
                x2 = fluid.data(name='x2', shape=[3, 4, 5, 6], dtype="float32")
                paddle.nn.functional.alpha_dropout(x2, p=1.2)

            self.assertRaises(ValueError, test_pvalue)


class TestAlphaDropoutCAPI(unittest.TestCase):
    def setUp(self):
        np.random.seed(123)
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def test_dygraph(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                input_np = np.random.random([40, 40]).astype("float32")
                result_np = input_np
                input = fluid.dygraph.to_variable(input_np)
976
                m = paddle.nn.AlphaDropout(p=0.0)
977 978
                m.eval()
                result = m(input)
979 980 981
                np.testing.assert_allclose(
                    result.numpy(), result_np, rtol=1e-05
                )
982 983


984 985 986 987 988 989 990 991 992 993 994
class TestDropoutWithDeterminateSeedGenerator(unittest.TestCase):
    def setUp(self):
        paddle.framework.random.set_random_seed_generator('seed0', 123)
        paddle.framework.random.set_random_seed_generator('seed1', 123)
        rng0 = paddle.framework.random.get_random_seed_generator('seed0')
        rng1 = paddle.framework.random.get_random_seed_generator('seed1')
        self.places = [paddle.CPUPlace()]
        if paddle.is_compiled_with_cuda():
            self.places.append(paddle.CUDAPlace(0))

    def check_static_result(self, place):
995 996 997 998
        from paddle.distributed.fleet.meta_parallel.parallel_layers.random import (
            dropout,
        )

999 1000
        with static.program_guard(static.Program(), static.Program()):
            input = static.data(name="input", shape=[40, 40], dtype="float32")
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
            res1 = dropout(
                input,
                p=0.3,
                training=True,
                mode='upscale_in_train',
                rng_name='seed0',
            )
            res2 = dropout(
                input,
                p=0.3,
                training=True,
                mode='upscale_in_train',
                rng_name='seed1',
            )
1015 1016 1017 1018 1019 1020 1021
            res3 = dropout(input, p=0.3)

            in_np = np.random.random([40, 40]).astype("float32")

            exe = static.Executor(place)
            res_list = [res1, res2]
            for i in range(2):
1022 1023 1024 1025 1026
                out1, out2 = exe.run(
                    static.default_main_program(),
                    feed={"input": in_np},
                    fetch_list=res_list,
                )
1027
                np.testing.assert_allclose(out1, out2, rtol=1e-05)
1028 1029 1030 1031 1032 1033

    def test_static(self):
        for place in self.places:
            self.check_static_result(place=place)


H
hong 已提交
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
class TestDropoutBackward(unittest.TestCase):
    def setUp(self):
        np.random.seed(123)
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def cal_grad_upscale_train(self, mask, prob):
        return mask.astype("float32") / (1 - prob)

    def cal_grad_downscale_in_infer(self, mask):
        return mask.astype("float32")

    def test_backward_downscale_in_infer(self):
1048
        _enable_legacy_dygraph()
H
hong 已提交
1049 1050 1051 1052 1053 1054 1055 1056
        for place in self.places:
            with fluid.dygraph.guard(place):

                input = paddle.uniform([40, 40], dtype="float32")
                input.stop_gradient = False
                out, mask = core.ops.dropout(input, 'dropout_prob', 0.5)
                out.backward()

1057 1058
                np.testing.assert_array_equal(
                    input.gradient(),
1059 1060
                    self.cal_grad_downscale_in_infer(mask.numpy()),
                )
H
hong 已提交
1061

H
hong 已提交
1062 1063 1064 1065 1066 1067
    def test_backward_downscale_in_infer_eager(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                with _test_eager_guard():
                    input = paddle.uniform([40, 40], dtype="float32")
                    input.stop_gradient = False
1068 1069 1070
                    out, mask = _C_ops.dropout(
                        input, None, 0.5, False, "downgrade_in_infer", 0, False
                    )
H
hong 已提交
1071
                    out.backward()
1072 1073
                    np.testing.assert_array_equal(
                        input.gradient(),
1074 1075
                        self.cal_grad_downscale_in_infer(mask.numpy()),
                    )
H
hong 已提交
1076

H
hong 已提交
1077
    def test_backward_upscale_train(self):
1078
        _enable_legacy_dygraph()
H
hong 已提交
1079 1080 1081 1082 1083 1084
        for place in self.places:
            with fluid.dygraph.guard(place):

                prob = 0.5
                input = paddle.uniform([40, 40], dtype="float32")
                input.stop_gradient = False
1085 1086 1087 1088 1089 1090 1091
                out, mask = core.ops.dropout(
                    input,
                    'dropout_prob',
                    prob,
                    "dropout_implementation",
                    "upscale_in_train",
                )
H
hong 已提交
1092 1093
                out.backward()

1094 1095 1096 1097 1098
                np.testing.assert_allclose(
                    input.gradient(),
                    self.cal_grad_upscale_train(mask.numpy(), prob),
                    rtol=1e-05,
                )
H
hong 已提交
1099 1100 1101 1102 1103 1104 1105 1106

    def test_backward_upscale_train_eager(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                with _test_eager_guard():
                    prob = 0.5
                    input = paddle.uniform([40, 40], dtype="float32")
                    input.stop_gradient = False
1107 1108 1109
                    out, mask = _C_ops.dropout(
                        input, None, 0.5, False, "upscale_in_train", 0, False
                    )
H
hong 已提交
1110 1111
                    out.backward()

1112 1113 1114 1115 1116
                    np.testing.assert_allclose(
                        input.gradient(),
                        self.cal_grad_upscale_train(mask.numpy(), prob),
                        rtol=1e-05,
                    )
H
hong 已提交
1117 1118

    def test_backward_upscale_train_2(self):
1119
        _enable_legacy_dygraph()
H
hong 已提交
1120 1121 1122 1123 1124 1125
        for place in self.places:
            with fluid.dygraph.guard(place):

                prob = 0.3
                input = paddle.uniform([40, 40], dtype="float32")
                input.stop_gradient = False
1126 1127 1128 1129 1130 1131 1132
                out, mask = core.ops.dropout(
                    input,
                    'dropout_prob',
                    prob,
                    "dropout_implementation",
                    "upscale_in_train",
                )
H
hong 已提交
1133 1134
                out.backward()

1135 1136 1137 1138 1139
                np.testing.assert_allclose(
                    input.gradient(),
                    self.cal_grad_upscale_train(mask.numpy(), prob),
                    rtol=1e-05,
                )
H
hong 已提交
1140

1141 1142 1143 1144 1145 1146 1147 1148
    def test_backward_upscale_train_2_eager(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                with _test_eager_guard():

                    prob = 0.3
                    input = paddle.uniform([40, 40], dtype="float32")
                    input.stop_gradient = False
1149 1150 1151
                    out, mask = _C_ops.dropout(
                        input, None, 0.3, False, "upscale_in_train", 0, False
                    )
1152 1153 1154

                    out.backward()

1155 1156 1157 1158 1159
                    np.testing.assert_allclose(
                        input.gradient(),
                        self.cal_grad_upscale_train(mask.numpy(), prob),
                        rtol=1e-05,
                    )
1160

H
hong 已提交
1161

1162 1163
class TestDropOutWithProbTensor(unittest.TestCase):
    def setUp(self):
1164 1165
        self.init_info()
        self.input = np.random.random(self.shape).astype("float32")
1166 1167 1168 1169 1170
        self.place = (
            paddle.CUDAPlace(0)
            if paddle.is_compiled_with_cuda()
            else paddle.CPUPlace()
        )
1171

1172 1173 1174 1175
    def init_info(self):
        self.shape = [10, 10]
        self.api = paddle.nn.functional.dropout

1176 1177
    def api_case(self, x):
        p = paddle.assign([0.5])
1178
        out = self.api(x=x, p=p, training=True)
1179 1180 1181 1182 1183 1184 1185 1186 1187
        return out

    def run_static(self, x):
        paddle.seed(2022)
        main_program = Program()

        with program_guard(main_program):
            input = paddle.static.data(shape=x.shape, name='x', dtype='float32')
            out = self.api_case(input)
1188 1189
            sgd = paddle.optimizer.SGD(learning_rate=0.1)
            sgd.minimize(paddle.mean(out))
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202

            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'x': x}, fetch_list=[out])

        return res[0]

    def run_dygraph(self, x):
        paddle.seed(2022)
        with fluid.dygraph.guard(self.place):
            out = self.api_case(paddle.to_tensor(x))
        return out

    def test_p_tensor(self):
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
        static_res = self.run_static(self.input)
        dygraph_res = self.run_dygraph(self.input)
        np.testing.assert_array_equal(static_res, dygraph_res)


class TestDropOut2DWithProbTensor(TestDropOutWithProbTensor):
    def init_info(self):
        self.shape = [2, 3, 10, 10]
        self.api = paddle.nn.functional.dropout2d


class TestDropOut3DWithProbTensor(TestDropOutWithProbTensor):
    def init_info(self):
        self.shape = [2, 3, 8, 8, 8]
        self.api = paddle.nn.functional.dropout3d
1218 1219


1220 1221 1222 1223 1224 1225 1226
class TestRandomValue(unittest.TestCase):
    def test_fixed_random_number(self):
        # Test GPU Fixed random number, which is generated by 'curandStatePhilox4_32_10_t'
        if not paddle.is_compiled_with_cuda():
            return

        # Different GPU generate different random value. Only test V100 here.
1227
        if "V100" not in paddle.device.cuda.get_device_name():
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
            return

        print("Test Fixed Random number on V100 GPU------>")
        paddle.disable_static()
        paddle.set_device('gpu')
        paddle.seed(100)

        x = paddle.rand([32, 1024, 1024], dtype='float32')
        out = paddle.nn.functional.dropout(x, 0.25).numpy()
        index0, index1, index2 = np.nonzero(out)
        self.assertEqual(np.sum(index0), 390094540)
        self.assertEqual(np.sum(index1), 12871475125)
        self.assertEqual(np.sum(index2), 12872777397)
        self.assertEqual(np.sum(out), 16778744.0)
        expect = [
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
            0.6914956,
            0.5294584,
            0.19032137,
            0.6996228,
            0.3338527,
            0.8442094,
            0.96965003,
            1.1726775,
            0.0,
            0.28037727,
1253
        ]
1254
        np.testing.assert_allclose(out[10, 100, 500:510], expect, rtol=1e-05)
1255 1256 1257 1258 1259 1260 1261 1262 1263

        x = paddle.rand([32, 1024, 1024], dtype='float64')
        out = paddle.nn.functional.dropout(x).numpy()
        index0, index1, index2 = np.nonzero(out)
        self.assertEqual(np.sum(index0), 260065137)
        self.assertEqual(np.sum(index1), 8582636095)
        self.assertEqual(np.sum(index2), 8582219962)
        self.assertEqual(np.sum(out), 16778396.563660286)
        expect = [
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
            1.28587354,
            0.15563703,
            0.0,
            0.28799703,
            0.0,
            0.0,
            0.0,
            0.54964,
            0.51355682,
            0.33818988,
1274
        ]
1275
        np.testing.assert_allclose(out[20, 100, 500:510], expect, rtol=1e-05)
1276 1277 1278 1279 1280 1281 1282

        x = paddle.ones([32, 1024, 1024], dtype='float16')
        out = paddle.nn.functional.dropout(x, 0.75).numpy()
        index0, index1, index2 = np.nonzero(out)
        self.assertEqual(np.sum(index0), 130086900)
        self.assertEqual(np.sum(index1), 4291190105)
        self.assertEqual(np.sum(index2), 4292243807)
1283
        expect = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.0, 4.0]
1284
        np.testing.assert_allclose(out[0, 100, 500:510], expect, rtol=1e-05)
1285 1286 1287 1288

        paddle.enable_static()


1289
if __name__ == '__main__':
H
hong 已提交
1290
    paddle.enable_static()
1291
    unittest.main()