test_downpoursgd.py 9.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
"""Test cases for Downpour."""
15 16 17 18 19 20

import paddle
import paddle.fluid as fluid
import os
import unittest
import sys
21 22 23 24
from paddle.fluid.incubate.fleet.parameter_server.pslib.node import (
    DownpourWorker,
    DownpourServer,
)
25 26
from google.protobuf import text_format
import paddle.fluid.incubate.fleet.parameter_server.pslib.ps_pb2 as pslib
27
from paddle.fluid.trainer_factory import TrainerFactory
28

29 30
cache_path = os.path.expanduser('~/.cache/paddle/dataset')

31

32
class TestListenAndServOp(unittest.TestCase):
33
    """This class is Test Listen And ServOp."""
34

35
    def setUp(self):
36 37 38
        """This function is set Up."""
        if not os.path.exists(cache_path):
            os.makedirs(cache_path)
39 40

    def test_device_work_use_cvm(self):
41
        """test device work use_cvm."""
42 43 44 45
        if sys.platform == 'win32' or sys.platform == 'sys.platform':
            pass
        else:
            print(sys.platform)
46 47 48
            if not os.path.exists(
                '{}/{}'.format(cache_path, 'fleet_desc.prototxt')
            ):
49
                cmd = "wget --no-check-certificate https://pslib.bj.bcebos.com/fleet_desc.prototxt -P {}/".format(
50 51
                    cache_path
                )
52
                os.system(cmd)
53
            x = fluid.layers.data(name='x', shape=[1], dtype='int64')
54 55 56
            x_emb = fluid.layers.embedding(
                input=x, size=[1, 2], is_distributed=True
            )
57 58 59
            y_predict = fluid.layers.fc(input=x_emb, size=1, act=None)
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
            cost = fluid.layers.square_error_cost(input=y_predict, label=y)
60
            avg_cost = paddle.mean(cost)
61 62

            ps_param = pslib.PSParameter()
63
            with open("{}/fleet_desc.prototxt".format(cache_path)) as f:
64 65 66 67 68 69 70 71 72 73 74
                text_format.Merge(f.read(), ps_param)
            fleet_desc = ps_param
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            opt_info = {}
            main_program = fluid.default_main_program()
            program_id = str(id(avg_cost.block.program))
            program_configs = {}
            program_configs[program_id] = {
                "pull_sparse": [0],
75
                "push_sparse": [0],
76 77 78 79 80 81 82 83 84 85 86 87 88 89
            }
            program_configs[program_id]["pull_dense"] = [1]
            program_configs[program_id]["push_dense"] = [1]

            worker_skipped_ops = ["lookup_table", "lookup_table_grad"]
            opt_info["program_configs"] = program_configs
            opt_info["trainer"] = "DistMultiTrainer"
            opt_info["device_worker"] = "DownpourSGD"
            opt_info["optimizer"] = "DownpourSGD"
            opt_info["fleet_desc"] = ps_param
            opt_info["worker_skipped_ops"] = worker_skipped_ops
            opt_info["use_cvm"] = True
            opt_info["scale_datanorm"] = -1
            opt_info["dump_slot"] = False
90
            opt_info["stat_var_names"] = []
91
            worker = DownpourWorker(None)
92 93
            server = DownpourServer()
            server.add_sparse_table(0, {})
94 95
            worker.get_desc().CopyFrom(ps_param.trainer_param[0])
            opt_info["program_id_to_worker"] = {program_id: worker}
96 97

            main_program._fleet_opt = opt_info
98
            trainer = TrainerFactory()._create_trainer(main_program._fleet_opt)
99 100 101 102
            trainer._set_program(main_program)
            trainer._gen_trainer_desc()

    def test_device_work(self):
103
        """This function is test devicve worker."""
104 105 106 107
        if sys.platform == 'win32' or sys.platform == 'sys.platform':
            pass
        else:
            print(sys.platform)
108 109 110
            if not os.path.exists(
                '{}/{}'.format(cache_path, 'fleet_desc.prototxt')
            ):
111
                cmd = "wget --no-check-certificate https://pslib.bj.bcebos.com/fleet_desc.prototxt -P {}/".format(
112 113
                    cache_path
                )
114
                os.system(cmd)
115
            x = fluid.layers.data(name='x', shape=[1], dtype='int64')
116 117 118
            x_emb = fluid.layers.embedding(
                input=x, size=[1, 2], is_distributed=True
            )
119 120 121
            y_predict = fluid.layers.fc(input=x_emb, size=1, act=None)
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
            cost = fluid.layers.square_error_cost(input=y_predict, label=y)
122
            avg_cost = paddle.mean(cost)
123 124

            ps_param = pslib.PSParameter()
125
            with open("{}/fleet_desc.prototxt".format(cache_path)) as f:
126 127 128 129 130 131 132 133 134 135 136
                text_format.Merge(f.read(), ps_param)
            fleet_desc = ps_param
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            opt_info = {}
            main_program = fluid.default_main_program()
            program_id = str(id(avg_cost.block.program))
            program_configs = {}
            program_configs[program_id] = {
                "pull_sparse": [0],
137
                "push_sparse": [0],
138 139 140 141 142 143 144 145 146 147 148 149 150 151
            }
            program_configs[program_id]["pull_dense"] = [1]
            program_configs[program_id]["push_dense"] = [1]

            worker_skipped_ops = ["lookup_table", "lookup_table_grad"]
            opt_info["program_configs"] = program_configs
            opt_info["trainer"] = "DistMultiTrainer"
            opt_info["device_worker"] = "DownpourSGD"
            opt_info["optimizer"] = "DownpourSGD"
            opt_info["fleet_desc"] = ps_param
            opt_info["worker_skipped_ops"] = worker_skipped_ops
            opt_info["use_cvm"] = False
            opt_info["scale_datanorm"] = -1
            opt_info["dump_slot"] = False
152
            opt_info["stat_var_names"] = []
153 154 155
            worker = DownpourWorker(None)
            worker.get_desc().CopyFrom(ps_param.trainer_param[0])
            opt_info["program_id_to_worker"] = {program_id: worker}
156 157

            main_program._fleet_opt = opt_info
158
            trainer = TrainerFactory()._create_trainer(main_program._fleet_opt)
159 160 161
            trainer._set_program(main_program)
            trainer._gen_trainer_desc()

162
    def test_downpour_opt_work(self):
163
        """This function is test devicve worker."""
164 165 166 167
        if sys.platform == 'win32' or sys.platform == 'sys.platform':
            pass
        else:
            print(sys.platform)
168 169 170
            if not os.path.exists(
                '{}/{}'.format(cache_path, 'fleet_desc.prototxt')
            ):
171
                cmd = "wget --no-check-certificate https://pslib.bj.bcebos.com/fleet_desc.prototxt -P {}/".format(
172 173
                    cache_path
                )
174
                os.system(cmd)
175
            x = fluid.layers.data(name='x', shape=[1], dtype='int64')
176 177 178
            x_emb = fluid.layers.embedding(
                input=x, size=[1, 2], is_distributed=True
            )
179 180 181
            y_predict = fluid.layers.fc(input=x_emb, size=1, act=None)
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
            cost = fluid.layers.square_error_cost(input=y_predict, label=y)
182
            avg_cost = paddle.mean(cost)
183 184

            ps_param = pslib.PSParameter()
185
            with open("{}/fleet_desc.prototxt".format(cache_path)) as f:
186 187 188 189 190 191 192 193 194 195 196
                text_format.Merge(f.read(), ps_param)
            fleet_desc = ps_param
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            opt_info = {}
            main_program = fluid.default_main_program()
            program_id = str(id(avg_cost.block.program))
            program_configs = {}
            program_configs[program_id] = {
                "pull_sparse": [0],
197
                "push_sparse": [0],
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
            }
            program_configs[program_id]["pull_dense"] = [1]
            program_configs[program_id]["push_dense"] = [1]

            worker_skipped_ops = ["lookup_table", "lookup_table_grad"]
            opt_info["program_configs"] = program_configs
            opt_info["trainer"] = "DistMultiTrainer"
            opt_info["device_worker"] = "DownpourSGDOPT"
            opt_info["optimizer"] = "DownpourSGD"
            opt_info["fleet_desc"] = ps_param
            opt_info["worker_skipped_ops"] = worker_skipped_ops
            opt_info["use_cvm"] = False
            opt_info["scale_datanorm"] = -1
            opt_info["dump_slot"] = False
            opt_info["stat_var_names"] = []
            worker = DownpourWorker(None)
            worker.get_desc().CopyFrom(ps_param.trainer_param[0])
            opt_info["program_id_to_worker"] = {program_id: worker}

            main_program._fleet_opt = opt_info
218
            trainer = TrainerFactory()._create_trainer(main_program._fleet_opt)
219 220 221
            trainer._set_program(main_program)
            trainer._gen_trainer_desc()

222 223 224

if __name__ == "__main__":
    unittest.main()