test_case.py 11.7 KB
Newer Older
L
liym27 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import unittest

18
import paddle
L
liym27 已提交
19 20 21 22 23
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.layers as layers
from paddle.fluid.framework import Program, program_guard
from functools import partial
24
import paddle.fluid.optimizer as optimizer
L
liym27 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47


class TestAPICase(unittest.TestCase):
    def test_return_single_var(self):
        def fn_1():
            return layers.fill_constant(shape=[4, 2], dtype='int32', value=1)

        def fn_2():
            return layers.fill_constant(shape=[4, 2], dtype='int32', value=2)

        def fn_3():
            return layers.fill_constant(shape=[4, 3], dtype='int32', value=3)

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
            y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
            z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)
            pred_2 = layers.less_than(x, y)  # false: 0.3 < 0.1
            pred_1 = layers.less_than(z, x)  # true: 0.2 < 0.3

            # call fn_1
48 49 50
            out_0 = layers.case(
                pred_fn_pairs=[(pred_1, fn_1), (pred_1, fn_2)], default=fn_3
            )
L
liym27 已提交
51 52

            # call fn_2
53 54 55
            out_1 = layers.case(
                pred_fn_pairs=[(pred_2, fn_1), (pred_1, fn_2)], default=fn_3
            )
L
liym27 已提交
56 57

            # call default fn_3
58 59 60
            out_2 = layers.case(
                pred_fn_pairs=((pred_2, fn_1), (pred_2, fn_2)), default=fn_3
            )
L
liym27 已提交
61 62 63 64 65 66 67

            # no default, call fn_2
            out_3 = layers.case(pred_fn_pairs=[(pred_1, fn_2)])

            # no default, call fn_2. but pred_2 is false
            out_4 = layers.case(pred_fn_pairs=[(pred_2, fn_2)])

68 69 70 71 72
            place = (
                fluid.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
L
liym27 已提交
73 74
            exe = fluid.Executor(place)

75 76 77
            res = exe.run(
                main_program, fetch_list=[out_0, out_1, out_2, out_3, out_4]
            )
L
liym27 已提交
78

79 80 81 82 83
            np.testing.assert_allclose(res[0], 1, rtol=1e-05)
            np.testing.assert_allclose(res[1], 2, rtol=1e-05)
            np.testing.assert_allclose(res[2], 3, rtol=1e-05)
            np.testing.assert_allclose(res[3], 2, rtol=1e-05)
            np.testing.assert_allclose(res[4], 2, rtol=1e-05)
L
liym27 已提交
84 85 86

    def test_return_var_tuple(self):
        def fn_1():
87 88 89
            return layers.fill_constant(
                shape=[1, 2], dtype='int32', value=1
            ), layers.fill_constant(shape=[2, 3], dtype='float32', value=2)
L
liym27 已提交
90 91

        def fn_2():
92 93 94
            return layers.fill_constant(
                shape=[3, 4], dtype='int32', value=3
            ), layers.fill_constant(shape=[4, 5], dtype='float32', value=4)
L
liym27 已提交
95 96

        def fn_3():
97 98 99
            return layers.fill_constant(
                shape=[5], dtype='int32', value=5
            ), layers.fill_constant(shape=[5, 6], dtype='float32', value=6)
L
liym27 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            x = layers.fill_constant(shape=[1], dtype='float32', value=1)
            y = layers.fill_constant(shape=[1], dtype='float32', value=1)
            z = layers.fill_constant(shape=[1], dtype='float32', value=3)

            pred_1 = layers.equal(x, y)  # true
            pred_2 = layers.equal(x, z)  # false

            out = layers.case(((pred_1, fn_1), (pred_2, fn_2)), fn_3)

113 114 115 116 117
            place = (
                fluid.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
L
liym27 已提交
118 119 120
            exe = fluid.Executor(place)
            ret = exe.run(main_program, fetch_list=out)

121 122 123 124 125 126
            np.testing.assert_allclose(
                np.asarray(ret[0]), np.full((1, 2), 1, np.int32), rtol=1e-05
            )
            np.testing.assert_allclose(
                np.asarray(ret[1]), np.full((2, 3), 2, np.float32), rtol=1e-05
            )
L
liym27 已提交
127 128 129 130 131 132 133


class TestAPICase_Nested(unittest.TestCase):
    def test_nested_case(self):
        def fn_1(x=1):
            var_5 = layers.fill_constant(shape=[1], dtype='int32', value=5)
            var_6 = layers.fill_constant(shape=[1], dtype='int32', value=6)
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
            out = layers.case(
                pred_fn_pairs=[
                    (
                        var_5 < var_6,
                        partial(
                            layers.fill_constant,
                            shape=[1],
                            dtype='int32',
                            value=x,
                        ),
                    ),
                    (
                        var_5 == var_6,
                        partial(
                            layers.fill_constant,
                            shape=[2],
                            dtype='int32',
                            value=x,
                        ),
                    ),
                ]
            )
L
liym27 已提交
156 157 158 159 160
            return out

        def fn_2(x=2):
            var_5 = layers.fill_constant(shape=[1], dtype='int32', value=5)
            var_6 = layers.fill_constant(shape=[1], dtype='int32', value=6)
161 162 163 164 165 166 167 168 169 170 171 172 173 174
            out = layers.case(
                pred_fn_pairs=[
                    (var_5 < var_6, partial(fn_1, x=x)),
                    (
                        var_5 == var_6,
                        partial(
                            layers.fill_constant,
                            shape=[2],
                            dtype='int32',
                            value=x,
                        ),
                    ),
                ]
            )
L
liym27 已提交
175 176 177 178 179
            return out

        def fn_3():
            var_5 = layers.fill_constant(shape=[1], dtype='int32', value=5)
            var_6 = layers.fill_constant(shape=[1], dtype='int32', value=6)
180 181 182 183 184 185 186 187 188 189 190 191 192 193
            out = layers.case(
                pred_fn_pairs=[
                    (var_5 < var_6, partial(fn_2, x=3)),
                    (
                        var_5 == var_6,
                        partial(
                            layers.fill_constant,
                            shape=[2],
                            dtype='int32',
                            value=7,
                        ),
                    ),
                ]
            )
L
liym27 已提交
194 195 196 197 198 199 200 201 202 203 204
            return out

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
            y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
            z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)
            pred_2 = layers.less_than(x, y)  # false: 0.3 < 0.1
            pred_1 = layers.less_than(z, x)  # true: 0.2 < 0.3

205 206 207
            out_1 = layers.case(
                pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3
            )
L
liym27 已提交
208

209 210 211
            out_2 = layers.case(
                pred_fn_pairs=[(pred_2, fn_1), (pred_1, fn_2)], default=fn_3
            )
L
liym27 已提交
212

213 214 215
            out_3 = layers.case(
                pred_fn_pairs=[(x == y, fn_1), (x == z, fn_2)], default=fn_3
            )
L
liym27 已提交
216

217 218 219 220 221
            place = (
                fluid.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
L
liym27 已提交
222 223 224 225
            exe = fluid.Executor(place)

            res = exe.run(main_program, fetch_list=[out_1, out_2, out_3])

226 227 228
            np.testing.assert_allclose(res[0], 1, rtol=1e-05)
            np.testing.assert_allclose(res[1], 2, rtol=1e-05)
            np.testing.assert_allclose(res[2], 3, rtol=1e-05)
L
liym27 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242


class TestAPICase_Error(unittest.TestCase):
    def test_error(self):
        def fn_1():
            return layers.fill_constant(shape=[4, 2], dtype='int32', value=1)

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            x = layers.fill_constant(shape=[1], dtype='float32', value=0.23)
            z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)
            pred_1 = layers.less_than(z, x)  # true

243
            # The type of 'pred_fn_pairs' in case must be list or tuple
L
liym27 已提交
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
            def type_error_pred_fn_pairs():
                layers.case(pred_fn_pairs=1, default=fn_1)

            self.assertRaises(TypeError, type_error_pred_fn_pairs)

            # The elements' type of 'pred_fn_pairs' in Op(case) must be tuple
            def type_error_pred_fn_1():
                layers.case(pred_fn_pairs=[1], default=fn_1)

            self.assertRaises(TypeError, type_error_pred_fn_1)

            # The tuple's size of 'pred_fn_pairs' in Op(case) must be 2
            def type_error_pred_fn_2():
                layers.case(pred_fn_pairs=[(1, 2, 3)], default=fn_1)

            self.assertRaises(TypeError, type_error_pred_fn_2)

            # The pred's type of 'pred_fn_pairs' in Op(case) must be bool Variable
            def type_error_pred():
                layers.case(pred_fn_pairs=[(1, fn_1)], default=fn_1)

            self.assertRaises(TypeError, type_error_pred)

            # The function of pred_fn_pairs in case must be callable
            def type_error_fn():
                layers.case(pred_fn_pairs=[(pred_1, 2)], default=fn_1)

            self.assertRaises(TypeError, type_error_fn)

            # The default in Op(case) must be callable
            def type_error_default():
                layers.case(pred_fn_pairs=[(pred_1, fn_1)], default=fn_1())

            self.assertRaises(TypeError, type_error_default)


280 281 282 283 284 285 286
# when optimizer in case
class TestMutiTask(unittest.TestCase):
    def test_optimizer_in_case(self):
        BATCH_SIZE = 1
        INPUT_SIZE = 784
        EPOCH_NUM = 2

287 288 289 290 291 292
        x = fluid.data(
            name='x', shape=[BATCH_SIZE, INPUT_SIZE], dtype='float32'
        )
        y = fluid.data(
            name='y', shape=[BATCH_SIZE, INPUT_SIZE], dtype='float32'
        )
293 294 295 296 297 298 299 300 301

        switch_id = fluid.data(name='switch_id', shape=[1], dtype='int32')

        one = layers.fill_constant(shape=[1], dtype='int32', value=1)
        adam = optimizer.Adam(learning_rate=0.001)
        adagrad = optimizer.Adagrad(learning_rate=0.001)

        def fn_1():
            sum = layers.elementwise_mul(x, y)
302
            loss = paddle.mean(sum, name="f_1_loss")
303 304 305 306
            adam.minimize(loss)

        def fn_2():
            sum = layers.elementwise_mul(x, y)
307
            loss = paddle.mean(sum, name="f_2_loss")
308 309 310 311 312 313 314 315 316
            adagrad.minimize(loss)

        layers.case(pred_fn_pairs=[(switch_id == one, fn_1)], default=fn_2)

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())

        for epoch in range(EPOCH_NUM):
            np.random.seed(epoch)
317 318 319
            feed_image = np.random.random(size=[BATCH_SIZE, INPUT_SIZE]).astype(
                'float32'
            )
320
            main_program = fluid.default_main_program()
321 322 323 324 325 326 327 328 329
            out = exe.run(
                main_program,
                feed={
                    'x': feed_image,
                    'y': feed_image,
                    'switch_id': np.array([epoch]).astype('int32'),
                },
                fetch_list=[],
            )
330 331


L
liym27 已提交
332 333
if __name__ == '__main__':
    unittest.main()