test_beam_search_op.py 14.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from paddle.fluid.op import Operator
16
import paddle.fluid.core as core
Y
Yan Chunwei 已提交
17 18
import unittest
import numpy as np
19 20
import paddle.fluid as fluid
from paddle.fluid.framework import Program, program_guard
Y
Yan Chunwei 已提交
21 22 23 24 25 26 27 28 29


def create_tensor(scope, name, np_data):
    tensor = scope.var(name).get_tensor()
    tensor.set(np_data, core.CPUPlace())
    return tensor


class BeamSearchOpTester(unittest.TestCase):
30 31
    """unittest of beam_search_op"""

Y
Yan Chunwei 已提交
32 33 34
    def setUp(self):
        self.scope = core.Scope()
        self._create_ids()
35
        self._create_pre_scores()
Y
Yan Chunwei 已提交
36 37
        self._create_scores()
        self._create_pre_ids()
P
pangyoki 已提交
38
        self.set_outputs()
39 40 41
        self.scope.var('selected_ids').get_tensor()
        self.scope.var('selected_scores').get_tensor()
        self.scope.var('parent_idx').get_tensor()
Y
Yan Chunwei 已提交
42 43

    def test_run(self):
44 45 46 47 48 49 50 51 52 53 54 55 56 57
        op = Operator(
            'beam_search',
            pre_ids='pre_ids',
            pre_scores='pre_scores',
            ids='ids',
            scores='scores',
            selected_ids='selected_ids',
            selected_scores='selected_scores',
            parent_idx='parent_idx',
            level=0,
            beam_size=self.beam_size,
            end_id=0,
            is_accumulated=self.is_accumulated,
        )
D
dzhwinter 已提交
58
        op.run(self.scope, core.CPUPlace())
Y
Yan Chunwei 已提交
59
        selected_ids = self.scope.find_var("selected_ids").get_tensor()
60
        selected_scores = self.scope.find_var("selected_scores").get_tensor()
61
        parent_idx = self.scope.find_var("parent_idx").get_tensor()
62 63 64 65 66 67
        np.testing.assert_allclose(
            np.array(selected_ids), self.output_ids, rtol=1e-05
        )
        np.testing.assert_allclose(
            np.array(selected_scores), self.output_scores, rtol=1e-05
        )
P
pangyoki 已提交
68
        self.assertEqual(selected_ids.lod(), self.output_lod)
69 70 71
        np.testing.assert_allclose(
            np.array(parent_idx), self.output_parent_idx, rtol=1e-05
        )
Y
Yan Chunwei 已提交
72 73

    def _create_pre_ids(self):
74
        np_data = np.array([[1, 2, 3, 4]], dtype='int64')
75 76 77 78 79
        tensor = create_tensor(self.scope, 'pre_ids', np_data)

    def _create_pre_scores(self):
        np_data = np.array([[0.1, 0.2, 0.3, 0.4]], dtype='float32')
        tensor = create_tensor(self.scope, 'pre_scores', np_data)
Y
Yan Chunwei 已提交
80 81

    def _create_ids(self):
82
        self.lod = [[0, 2, 4], [0, 1, 2, 3, 4]]
83 84 85
        np_data = np.array(
            [[4, 2, 5], [2, 1, 3], [3, 5, 2], [8, 2, 1]], dtype='int64'
        )
Y
Yan Chunwei 已提交
86 87 88 89
        tensor = create_tensor(self.scope, "ids", np_data)
        tensor.set_lod(self.lod)

    def _create_scores(self):
90 91 92 93 94 95 96 97 98
        np_data = np.array(
            [
                [0.5, 0.3, 0.2],
                [0.6, 0.3, 0.1],
                [0.9, 0.5, 0.1],
                [0.7, 0.5, 0.1],
            ],
            dtype='float32',
        )
Y
Yan Chunwei 已提交
99 100 101
        tensor = create_tensor(self.scope, "scores", np_data)
        tensor.set_lod(self.lod)

P
pangyoki 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
    def set_outputs(self):
        self.beam_size = 2
        self.is_accumulated = True
        self.output_ids = np.array([4, 2, 3, 8])[:, np.newaxis]
        self.output_scores = np.array([0.5, 0.6, 0.9, 0.7])[:, np.newaxis]
        self.output_lod = [[0, 2, 4], [0, 1, 2, 3, 4]]
        self.output_parent_idx = np.array([0, 1, 2, 3])


class BeamSearchOpTester2(BeamSearchOpTester):
    def _create_pre_ids(self):
        np_data = np.array([[1], [2], [3], [4]], dtype='int64')
        tensor = create_tensor(self.scope, 'pre_ids', np_data)

    def _create_pre_scores(self):
        np_data = np.array([[0.1, 0.2, 0.3, 0.4]], dtype='float32')
        tensor = create_tensor(self.scope, 'pre_scores', np_data)

    def _create_ids(self):
        self.lod = [[0, 2, 4], [0, 1, 2, 3, 4]]
        np_data = np.array([[4, 2], [7, 3], [3, 5], [8, 1]], dtype='int64')
        tensor = create_tensor(self.scope, "ids", np_data)
        tensor.set_lod(self.lod)

    def _create_scores(self):
127 128 129 130 131 132 133 134 135
        np_data = np.array(
            [
                [0.6, 0.9],
                [0.5, 0.3],
                [0.9, 0.5],
                [0.1, 0.7],
            ],
            dtype='float32',
        )
P
pangyoki 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
        tensor = create_tensor(self.scope, "scores", np_data)
        tensor.set_lod(self.lod)

    def set_outputs(self):
        self.beam_size = 2
        self.is_accumulated = True
        self.output_ids = np.array([2, 4, 3, 1])[:, np.newaxis]
        self.output_scores = np.array([0.9, 0.6, 0.9, 0.7])[:, np.newaxis]
        self.output_lod = [[0, 2, 4], [0, 2, 2, 3, 4]]
        self.output_parent_idx = np.array([0, 0, 2, 3])


class BeamSearchOpTester3(BeamSearchOpTester):
    # pre_id = end_id
    def _create_pre_ids(self):
        np_data = np.array([[1], [0], [0], [4]], dtype='int64')
        tensor = create_tensor(self.scope, 'pre_ids', np_data)

    def _create_pre_scores(self):
        np_data = np.array([[0.1], [1.2], [0.5], [0.4]], dtype='float32')
        tensor = create_tensor(self.scope, 'pre_scores', np_data)

    def _create_ids(self):
        self.lod = [[0, 2, 4], [0, 1, 2, 3, 4]]
        np_data = np.array([[4, 2], [7, 3], [3, 5], [8, 1]], dtype='int64')
        tensor = create_tensor(self.scope, "ids", np_data)
        tensor.set_lod(self.lod)

    def _create_scores(self):
165 166 167 168 169 170 171 172 173
        np_data = np.array(
            [
                [0.6, 0.9],
                [0.5, 0.3],
                [0.9, 0.5],
                [0.6, 0.7],
            ],
            dtype='float32',
        )
P
pangyoki 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
        tensor = create_tensor(self.scope, "scores", np_data)
        tensor.set_lod(self.lod)

    def set_outputs(self):
        self.beam_size = 2
        self.is_accumulated = True
        self.output_ids = np.array([2, 0, 1, 8])[:, np.newaxis]
        self.output_scores = np.array([0.9, 1.2, 0.7, 0.6])[:, np.newaxis]
        self.output_lod = [[0, 2, 4], [0, 1, 2, 2, 4]]
        self.output_parent_idx = np.array([0, 1, 3, 3])


class BeamSearchOpTester4(BeamSearchOpTester):
    # prune beam search while pre_id of in all beams is end_id
    def _create_pre_ids(self):
        np_data = np.array([[0], [0], [0], [4]], dtype='int64')
        tensor = create_tensor(self.scope, 'pre_ids', np_data)

    def _create_pre_scores(self):
        np_data = np.array([[0.1], [1.2], [0.5], [0.4]], dtype='float32')
        tensor = create_tensor(self.scope, 'pre_scores', np_data)

    def _create_ids(self):
        self.lod = [[0, 2, 4], [0, 1, 2, 3, 4]]
        np_data = np.array([[4, 2], [7, 3], [3, 5], [8, 1]], dtype='int64')
        tensor = create_tensor(self.scope, "ids", np_data)
        tensor.set_lod(self.lod)

    def _create_scores(self):
203 204 205 206 207 208 209 210 211
        np_data = np.array(
            [
                [0.6, 0.9],
                [0.5, 0.3],
                [0.9, 0.5],
                [0.6, 0.7],
            ],
            dtype='float32',
        )
P
pangyoki 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
        tensor = create_tensor(self.scope, "scores", np_data)
        tensor.set_lod(self.lod)

    def set_outputs(self):
        self.beam_size = 2
        self.is_accumulated = True
        self.output_ids = np.array([1, 8])[:, np.newaxis]
        self.output_scores = np.array([0.7, 0.6])[:, np.newaxis]
        self.output_lod = [[0, 2, 4], [0, 0, 0, 0, 2]]
        self.output_parent_idx = np.array([3, 3])


class BeamSearchOpTester5(BeamSearchOpTester):
    # is_accumulated = False
    def _create_pre_ids(self):
        np_data = np.array([[1], [2], [3], [4]], dtype='int64')
        tensor = create_tensor(self.scope, 'pre_ids', np_data)

    def _create_pre_scores(self):
        np_data = np.array([[0.1, 2.2, 0.3, 0.4]], dtype='float32')
        tensor = create_tensor(self.scope, 'pre_scores', np_data)

    def _create_ids(self):
        self.lod = [[0, 2, 4], [0, 1, 2, 3, 4]]
        np_data = np.array([[4, 2], [7, 3], [3, 5], [8, 1]], dtype='int64')
        tensor = create_tensor(self.scope, "ids", np_data)
        tensor.set_lod(self.lod)

    def _create_scores(self):
241 242 243 244 245 246 247 248 249
        np_data = np.array(
            [
                [0.6, 0.9],
                [0.5, 0.3],
                [0.9, 0.5],
                [0.1, 0.7],
            ],
            dtype='float32',
        )
P
pangyoki 已提交
250 251 252 253 254 255 256
        tensor = create_tensor(self.scope, "scores", np_data)
        tensor.set_lod(self.lod)

    def set_outputs(self):
        self.beam_size = 2
        self.is_accumulated = False
        self.output_ids = np.array([7, 3, 3, 1])[:, np.newaxis]
257 258 259
        self.output_scores = np.array([1.50685, 0.996027, 0.194639, 0.043325])[
            :, np.newaxis
        ]
P
pangyoki 已提交
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
        self.output_lod = [[0, 2, 4], [0, 0, 2, 3, 4]]
        self.output_parent_idx = np.array([1, 1, 2, 3])


class BeamSearchOpTester6(BeamSearchOpTester):
    # beam_size = 1
    def _create_pre_ids(self):
        np_data = np.array([[1], [2], [3], [4]], dtype='int64')
        tensor = create_tensor(self.scope, 'pre_ids', np_data)

    def _create_pre_scores(self):
        np_data = np.array([[0.1, 0.2, 0.3, 0.4]], dtype='float32')
        tensor = create_tensor(self.scope, 'pre_scores', np_data)

    def _create_ids(self):
        self.lod = [[0, 1, 2, 3, 4], [0, 1, 2, 3, 4]]
        np_data = np.array([[4, 2], [7, 3], [3, 5], [8, 1]], dtype='int64')
        tensor = create_tensor(self.scope, "ids", np_data)
        tensor.set_lod(self.lod)

    def _create_scores(self):
281 282 283 284 285 286 287 288 289
        np_data = np.array(
            [
                [0.6, 0.9],
                [0.5, 0.3],
                [0.9, 0.5],
                [0.1, 0.7],
            ],
            dtype='float32',
        )
P
pangyoki 已提交
290 291 292 293 294 295 296 297 298 299 300
        tensor = create_tensor(self.scope, "scores", np_data)
        tensor.set_lod(self.lod)

    def set_outputs(self):
        self.beam_size = 1
        self.is_accumulated = True
        self.output_ids = np.array([2, 7, 3, 1])[:, np.newaxis]
        self.output_scores = np.array([0.9, 0.5, 0.9, 0.7])[:, np.newaxis]
        self.output_lod = [[0, 1, 2, 3, 4], [0, 1, 2, 3, 4]]
        self.output_parent_idx = np.array([0, 1, 2, 3])

Y
Yan Chunwei 已提交
301

302 303 304
class TestBeamSearchOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
305 306 307 308 309 310
            pre_ids = fluid.data(
                name='pre_id', shape=[1], lod_level=2, dtype='int64'
            )
            pre_scores = fluid.data(
                name='pre_scores', shape=[1], lod_level=2, dtype='float32'
            )
311 312 313 314
            probs = fluid.data(name='probs', shape=[10000], dtype='float32')
            topk_scores, topk_indices = fluid.layers.topk(probs, k=4)
            accu_scores = fluid.layers.elementwise_add(
                x=fluid.layers.log(x=topk_scores),
315
                y=fluid.layers.reshape(pre_scores, shape=[-1]),
316 317
                axis=0,
            )
318 319 320 321

            def test_preids_Variable():
                # the input pre_ids must be Variable
                preids_data = np.random.randint(1, 5, [5, 1]).astype("int64")
322 323 324 325 326 327 328 329
                fluid.layers.beam_search(
                    pre_ids=preids_data,
                    pre_scores=pre_scores,
                    ids=topk_indices,
                    scores=accu_scores,
                    beam_size=4,
                    end_id=1,
                )
330 331 332 333 334

            self.assertRaises(TypeError, test_preids_Variable)

            def test_prescores_Variable():
                # the input pre_scores must be Variable
335 336 337 338 339 340 341 342 343 344 345
                prescores_data = np.random.uniform(1, 5, [5, 1]).astype(
                    "float32"
                )
                fluid.layers.beam_search(
                    pre_ids=pre_ids,
                    pre_scores=prescores_data,
                    ids=topk_indices,
                    scores=accu_scores,
                    beam_size=4,
                    end_id=1,
                )
346 347 348 349 350 351

            self.assertRaises(TypeError, test_prescores_Variable)

            def test_ids_Variable():
                # the input ids must be Variable or None
                ids_data = np.random.randint(1, 5, [5, 1]).astype("int64")
352 353 354 355 356 357 358 359
                fluid.layers.beam_search(
                    pre_ids=pre_ids,
                    pre_scores=pre_scores,
                    ids=ids_data,
                    scores=accu_scores,
                    beam_size=4,
                    end_id=1,
                )
360 361 362 363 364 365

            self.assertRaises(TypeError, test_ids_Variable)

            def test_scores_Variable():
                # the input scores must be Variable
                scores_data = np.random.uniform(1, 5, [5, 1]).astype("float32")
366 367 368 369 370 371 372 373
                fluid.layers.beam_search(
                    pre_ids=pre_ids,
                    pre_scores=pre_scores,
                    ids=topk_indices,
                    scores=scores_data,
                    beam_size=4,
                    end_id=1,
                )
374 375 376 377 378

            self.assertRaises(TypeError, test_scores_Variable)

            def test_preids_dtype():
                # the dtype of input pre_ids must be int64
379 380 381 382 383 384 385 386 387 388 389 390 391 392
                preids_type_data = fluid.data(
                    name='preids_type_data',
                    shape=[1],
                    lod_level=2,
                    dtype='float32',
                )
                fluid.layers.beam_search(
                    pre_ids=preids_type_data,
                    pre_scores=pre_scores,
                    ids=topk_indices,
                    scores=accu_scores,
                    beam_size=4,
                    end_id=1,
                )
393 394 395 396 397

            self.assertRaises(TypeError, test_preids_dtype)

            def test_prescores_dtype():
                # the dtype of input pre_scores must be float32
398 399 400 401 402 403 404 405 406 407 408 409 410 411
                prescores_type_data = fluid.data(
                    name='prescores_type_data',
                    shape=[1],
                    lod_level=2,
                    dtype='int64',
                )
                fluid.layers.beam_search(
                    pre_ids=pre_ids,
                    pre_scores=prescores_type_data,
                    ids=topk_indices,
                    scores=accu_scores,
                    beam_size=4,
                    end_id=1,
                )
412 413 414 415

            self.assertRaises(TypeError, test_prescores_dtype)


Y
Yan Chunwei 已提交
416 417
if __name__ == '__main__':
    unittest.main()