test_basic_lstm_api.py 10.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.core as core
from paddle.fluid.contrib.layers import basic_lstm
from paddle.fluid.executor import Executor
from paddle.fluid import framework

import numpy as np

26 27
np.set_seed(123)

28 29 30 31 32 33 34 35 36
SIGMOID_THRESHOLD_MIN = -40.0
SIGMOID_THRESHOLD_MAX = 13.0
EXP_MAX_INPUT = 40.0


def sigmoid(x):
    y = np.copy(x)
    y[x < SIGMOID_THRESHOLD_MIN] = SIGMOID_THRESHOLD_MIN
    y[x > SIGMOID_THRESHOLD_MAX] = SIGMOID_THRESHOLD_MAX
37
    return 1.0 / (1.0 + np.exp(-y))
38 39 40


def tanh(x):
41
    y = -2.0 * x
42
    y[y > EXP_MAX_INPUT] = EXP_MAX_INPUT
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
    return (2.0 / (1.0 + np.exp(y))) - 1.0


def lstm_np(
    input,
    init_h,
    init_c,
    hidden_size,
    gate_weight,
    gate_bias,
    num_layers=1,
    batch_first=False,
    is_bidirect=False,
    sequence_length=None,
    forget_bias=1.0,
):
59 60 61 62 63 64 65 66 67 68 69 70
    def step(step_in, pre_hidden, pre_cell, gate_w, gate_b):
        concat_1 = np.concatenate([step_in, pre_hidden], 1)

        gate_input = np.matmul(concat_1, gate_w)
        gate_input += gate_b
        i, j, f, o = np.split(gate_input, indices_or_sections=4, axis=1)

        new_cell = pre_cell * sigmoid(f + forget_bias) + sigmoid(i) * tanh(j)
        new_hidden = tanh(new_cell) * sigmoid(o)

        return new_hidden, new_cell

71 72
    mask = None

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
    if batch_first:
        input = np.tranpose(input, [1, 0, 2])
        if mask is not None:
            mask = np.transpose(mask, [1, 0])

    batch_size = input.shape[1]
    if sequence_length is not None:
        max_seq_len = input.shape[0]

        mask = np.zeros([batch_size, max_seq_len])

        for i, len in enumerate(sequence_length):
            mask[i, :len] = 1.0

        mask = np.transpose(mask, [1, 0])

    direc_num = 1
    if is_bidirect:
        direc_num = 2
    if init_h:
        init_h = np.reshape(init_h, [num_layers, direc_num, -1, hidden_size])
        init_c = np.reshape(init_c, [num_layers, direc_num, -1, hidden_size])
    else:
        init_h = np.zeros([num_layers, direc_num, batch_size, hidden_size])
        init_c = np.zeros([num_layers, direc_num, batch_size, hidden_size])

    def get_single_direction_output(rnn_input, mask=None, direc_index=0):
        seq_len = rnn_input.shape[0]

        output = []
        # init pre hidden
        pre_hidden_array = []
        pre_cell_array = []
        for i in range(num_layers):
            pre_hidden_array.append(init_h[i, direc_index])
            pre_cell_array.append(init_c[i, direc_index])

        for i in range(seq_len):
            step_input = rnn_input[i]

            if mask is not None:
                step_mask = mask[i]
                step_mask = np.reshape(step_mask, [-1, 1])
116
                # print("np mask", step_mask.shape  )
117 118 119

            for i in range(num_layers):
                new_hidden, new_cell = step(
120 121 122
                    step_input,
                    pre_hidden_array[i],
                    pre_cell_array[i],
123
                    gate_weight[direc_index * num_layers + i],
124 125
                    gate_bias[direc_index * num_layers + i],
                )
126 127 128 129

                if mask is not None:

                    new_hidden = np.multiply(
130 131 132 133
                        new_hidden, step_mask
                    ) - np.multiply(pre_hidden_array[i], (step_mask - 1.0))
                    # new_hidden = new_hidden * step_mask - pre_hidden_array[i] * ( step_mask -1 )
                    # new_cell = new_cell * step_mask - pre_cell_array[i] * (step_mask -1)
134
                    new_cell = np.multiply(new_cell, step_mask) - np.multiply(
135 136
                        pre_cell_array[i], (step_mask - 1.0)
                    )
137 138 139 140 141 142 143 144 145 146

                pre_hidden_array[i] = new_hidden
                pre_cell_array[i] = new_cell

                step_input = new_hidden
            output.append(step_input)
        rnn_out = np.concatenate(output, 0)
        rnn_out = np.reshape(rnn_out, [seq_len, -1, hidden_size])

        last_hidden_out = np.concatenate(pre_hidden_array, 0)
147 148 149
        last_hidden_out = np.reshape(
            last_hidden_out, [num_layers, -1, hidden_size]
        )
150 151 152 153 154 155 156

        last_cell_out = np.concatenate(pre_cell_array, 0)
        last_cell_out = np.reshape(last_cell_out, [num_layers, -1, hidden_size])

        return rnn_out, last_hidden_out, last_cell_out

    fw_rnn_out, fw_last_hidden, fw_last_cell = get_single_direction_output(
157 158
        input, mask, direc_index=0
    )
159 160 161 162 163 164 165 166

    if is_bidirect:
        bw_input = input[::-1]
        bw_mask = None
        if mask is not None:
            bw_mask = mask[::-1]

        bw_rnn_out, bw_last_hidden, bw_last_cell = get_single_direction_output(
167 168
            bw_input, bw_mask, direc_index=1
        )
169 170 171 172 173

        bw_rnn_out = bw_rnn_out[::-1]

        rnn_out = np.concatenate([fw_rnn_out, bw_rnn_out], 2)
        last_hidden = np.concatenate([fw_last_hidden, bw_last_hidden], 1)
174 175 176
        last_hidden = np.reshape(
            last_hidden, [num_layers * direc_num, -1, hidden_size]
        )
177 178

        last_cell = np.concatenate([fw_last_cell, bw_last_cell], 1)
179 180 181
        last_cell = np.reshape(
            last_cell, [num_layers * direc_num, -1, hidden_size]
        )
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208

        if batch_first:
            rnn_out = np.transpose(rnn_out, [1, 0, 2])

        return rnn_out, last_hidden, last_cell
    else:
        rnn_out = fw_rnn_out
        last_hidden = fw_last_hidden
        last_cell = fw_last_cell

        if batch_first:
            rnn_out = np.transpose(rnn_out, [1, 0, 2])

        return rnn_out, last_hidden, last_cell


class TestBasicLSTMApi(unittest.TestCase):
    def setUp(self):
        self.hidden_size = 10
        self.batch_size = 5
        self.seq_len = 6
        self.num_layers = 2
        self.is_bidirect = True
        self.batch_first = False
        self.forget_bias = 1.0

    def test_run(self):
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
        x = layers.data(
            name='x',
            shape=[-1, self.batch_size, self.hidden_size],
            dtype='float32',
        )
        sequence_length = layers.data(
            name="sequence_length", shape=[-1], dtype='float32'
        )

        rnn_out, last_hidden, last_cell = basic_lstm(
            x,
            None,
            None,
            self.hidden_size,
            num_layers=self.num_layers,
            batch_first=self.batch_first,
            bidirectional=self.is_bidirect,
            sequence_length=sequence_length,
            forget_bias=self.forget_bias,
        )
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249

        last_hidden.persisbale = True
        rnn_out.persisbale = True

        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()
        exe = Executor(place)
        exe.run(framework.default_startup_program())

        param_list = fluid.default_main_program().block(0).all_parameters()

        # process weight and bias
        gate_weight = []
        gate_bias = []

        for i in range(self.num_layers):
            gate_w_name = "basic_lstm_layers_" + str(i) + "/BasicLSTMUnit_0.w_0"
            gate_b_name = "basic_lstm_layers_" + str(i) + "/BasicLSTMUnit_0.b_0"

250
            gate_w = np.array(
251 252 253 254 255
                fluid.global_scope().find_var(gate_w_name).get_tensor()
            )
            gate_w = np.random.uniform(-0.1, 0.1, size=gate_w.shape).astype(
                'float32'
            )
256
            fluid.global_scope().find_var(gate_w_name).get_tensor().set(
257 258
                gate_w, place
            )
259

260
            gate_b = np.array(
261 262 263 264 265
                fluid.global_scope().find_var(gate_b_name).get_tensor()
            )
            gate_b = np.random.uniform(-0.1, 0.1, size=gate_b.shape).astype(
                'float32'
            )
266
            fluid.global_scope().find_var(gate_b_name).get_tensor().set(
267 268
                gate_b, place
            )
269 270 271 272 273 274

            gate_weight.append(gate_w)
            gate_bias.append(gate_b)

        if self.is_bidirect:
            for i in range(self.num_layers):
275 276 277 278 279 280 281 282 283 284
                gate_w_name = (
                    "basic_lstm_reverse_layers_"
                    + str(i)
                    + "/BasicLSTMUnit_0.w_0"
                )
                gate_b_name = (
                    "basic_lstm_reverse_layers_"
                    + str(i)
                    + "/BasicLSTMUnit_0.b_0"
                )
285

286
                gate_w = np.array(
287 288 289 290 291
                    fluid.global_scope().find_var(gate_w_name).get_tensor()
                )
                gate_w = np.random.uniform(-0.1, 0.1, size=gate_w.shape).astype(
                    'float32'
                )
292
                fluid.global_scope().find_var(gate_w_name).get_tensor().set(
293 294
                    gate_w, place
                )
295

296
                gate_b = np.array(
297 298 299 300 301
                    fluid.global_scope().find_var(gate_b_name).get_tensor()
                )
                gate_b = np.random.uniform(-0.1, 0.1, size=gate_b.shape).astype(
                    'float32'
                )
302
                fluid.global_scope().find_var(gate_b_name).get_tensor().set(
303 304
                    gate_b, place
                )
305 306 307 308

                gate_weight.append(gate_w)
                gate_bias.append(gate_b)

309
        step_input_np = np.random.uniform(
310 311
            -0.1, 0.1, (self.seq_len, self.batch_size, self.hidden_size)
        ).astype('float32')
312
        sequence_length_np = np.random.randint(
313 314
            self.seq_len // 2, self.seq_len, size=(self.batch_size)
        ).astype('int64')
315

316 317 318 319
        out = exe.run(
            feed={'x': step_input_np, 'sequence_length': sequence_length_np},
            fetch_list=[rnn_out, last_hidden, last_cell],
        )
320 321 322 323 324

        api_rnn_out = out[0]
        api_last_hidden = out[1]
        api_last_cell = out[2]

325 326 327 328 329 330 331 332 333 334 335 336
        np_out = lstm_np(
            step_input_np,
            None,
            None,
            self.hidden_size,
            gate_weight,
            gate_bias,
            num_layers=self.num_layers,
            batch_first=self.batch_first,
            is_bidirect=self.is_bidirect,
            sequence_length=sequence_length_np,
        )
337

338
        np.testing.assert_allclose(api_rnn_out, np_out[0], rtol=0.0001, atol=0)
339 340 341 342 343 344
        np.testing.assert_allclose(
            api_last_hidden, np_out[1], rtol=0.0001, atol=0
        )
        np.testing.assert_allclose(
            api_last_cell, np_out[2], rtol=0.0001, atol=0
        )
345 346 347 348


if __name__ == '__main__':
    unittest.main()