test_basic_lstm_api.py 10.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.core as core
from paddle.fluid.contrib.layers import basic_lstm
from paddle.fluid.executor import Executor
from paddle.fluid import framework

import numpy as np

26 27
np.set_seed(123)

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
SIGMOID_THRESHOLD_MIN = -40.0
SIGMOID_THRESHOLD_MAX = 13.0
EXP_MAX_INPUT = 40.0


def sigmoid(x):
    y = np.copy(x)
    y[x < SIGMOID_THRESHOLD_MIN] = SIGMOID_THRESHOLD_MIN
    y[x > SIGMOID_THRESHOLD_MAX] = SIGMOID_THRESHOLD_MAX
    return 1. / (1. + np.exp(-y))


def tanh(x):
    y = -2. * x
    y[y > EXP_MAX_INPUT] = EXP_MAX_INPUT
    return (2. / (1. + np.exp(y))) - 1.


def lstm_np(input,
            init_h,
            init_c,
            hidden_size,
            gate_weight,
            gate_bias,
            num_layers=1,
            batch_first=False,
            is_bidirect=False,
            sequence_length=None,
            forget_bias=1.0):
57

58 59 60 61 62 63 64 65 66 67 68 69
    def step(step_in, pre_hidden, pre_cell, gate_w, gate_b):
        concat_1 = np.concatenate([step_in, pre_hidden], 1)

        gate_input = np.matmul(concat_1, gate_w)
        gate_input += gate_b
        i, j, f, o = np.split(gate_input, indices_or_sections=4, axis=1)

        new_cell = pre_cell * sigmoid(f + forget_bias) + sigmoid(i) * tanh(j)
        new_hidden = tanh(new_cell) * sigmoid(o)

        return new_hidden, new_cell

70 71
    mask = None

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
    if batch_first:
        input = np.tranpose(input, [1, 0, 2])
        if mask is not None:
            mask = np.transpose(mask, [1, 0])

    batch_size = input.shape[1]
    if sequence_length is not None:
        max_seq_len = input.shape[0]

        mask = np.zeros([batch_size, max_seq_len])

        for i, len in enumerate(sequence_length):
            mask[i, :len] = 1.0

        mask = np.transpose(mask, [1, 0])

    direc_num = 1
    if is_bidirect:
        direc_num = 2
    if init_h:
        init_h = np.reshape(init_h, [num_layers, direc_num, -1, hidden_size])
        init_c = np.reshape(init_c, [num_layers, direc_num, -1, hidden_size])
    else:
        init_h = np.zeros([num_layers, direc_num, batch_size, hidden_size])
        init_c = np.zeros([num_layers, direc_num, batch_size, hidden_size])

    def get_single_direction_output(rnn_input, mask=None, direc_index=0):
        seq_len = rnn_input.shape[0]

        output = []
        # init pre hidden
        pre_hidden_array = []
        pre_cell_array = []
        for i in range(num_layers):
            pre_hidden_array.append(init_h[i, direc_index])
            pre_cell_array.append(init_c[i, direc_index])

        for i in range(seq_len):
            step_input = rnn_input[i]

            if mask is not None:
                step_mask = mask[i]
                step_mask = np.reshape(step_mask, [-1, 1])
                #print("np mask", step_mask.shape  )

            for i in range(num_layers):
                new_hidden, new_cell = step(
                    step_input, pre_hidden_array[i], pre_cell_array[i],
                    gate_weight[direc_index * num_layers + i],
                    gate_bias[direc_index * num_layers + i])

                if mask is not None:

                    new_hidden = np.multiply(
                        new_hidden, step_mask) - np.multiply(
                            pre_hidden_array[i], (step_mask - 1.0))
                    #new_hidden = new_hidden * step_mask - pre_hidden_array[i] * ( step_mask -1 )
                    #new_cell = new_cell * step_mask - pre_cell_array[i] * (step_mask -1)
                    new_cell = np.multiply(new_cell, step_mask) - np.multiply(
                        pre_cell_array[i], (step_mask - 1.0))

                pre_hidden_array[i] = new_hidden
                pre_cell_array[i] = new_cell

                step_input = new_hidden
            output.append(step_input)
        rnn_out = np.concatenate(output, 0)
        rnn_out = np.reshape(rnn_out, [seq_len, -1, hidden_size])

        last_hidden_out = np.concatenate(pre_hidden_array, 0)
        last_hidden_out = np.reshape(last_hidden_out,
                                     [num_layers, -1, hidden_size])

        last_cell_out = np.concatenate(pre_cell_array, 0)
        last_cell_out = np.reshape(last_cell_out, [num_layers, -1, hidden_size])

        return rnn_out, last_hidden_out, last_cell_out

    fw_rnn_out, fw_last_hidden, fw_last_cell = get_single_direction_output(
        input, mask, direc_index=0)

    if is_bidirect:
        bw_input = input[::-1]
        bw_mask = None
        if mask is not None:
            bw_mask = mask[::-1]

        bw_rnn_out, bw_last_hidden, bw_last_cell = get_single_direction_output(
            bw_input, bw_mask, direc_index=1)

        bw_rnn_out = bw_rnn_out[::-1]

        rnn_out = np.concatenate([fw_rnn_out, bw_rnn_out], 2)
        last_hidden = np.concatenate([fw_last_hidden, bw_last_hidden], 1)
        last_hidden = np.reshape(last_hidden,
                                 [num_layers * direc_num, -1, hidden_size])

        last_cell = np.concatenate([fw_last_cell, bw_last_cell], 1)
        last_cell = np.reshape(last_cell,
                               [num_layers * direc_num, -1, hidden_size])

        if batch_first:
            rnn_out = np.transpose(rnn_out, [1, 0, 2])

        return rnn_out, last_hidden, last_cell
    else:
        rnn_out = fw_rnn_out
        last_hidden = fw_last_hidden
        last_cell = fw_last_cell

        if batch_first:
            rnn_out = np.transpose(rnn_out, [1, 0, 2])

        return rnn_out, last_hidden, last_cell


class TestBasicLSTMApi(unittest.TestCase):
189

190 191 192 193 194 195 196 197 198 199
    def setUp(self):
        self.hidden_size = 10
        self.batch_size = 5
        self.seq_len = 6
        self.num_layers = 2
        self.is_bidirect = True
        self.batch_first = False
        self.forget_bias = 1.0

    def test_run(self):
200 201 202 203 204 205
        x = layers.data(name='x',
                        shape=[-1, self.batch_size, self.hidden_size],
                        dtype='float32')
        sequence_length = layers.data(name="sequence_length",
                                      shape=[-1],
                                      dtype='float32')
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229

        rnn_out, last_hidden, last_cell = basic_lstm( x, None, None, self.hidden_size, num_layers=self.num_layers, \
                batch_first = self.batch_first, bidirectional=self.is_bidirect, sequence_length=sequence_length, forget_bias = self.forget_bias )

        last_hidden.persisbale = True
        rnn_out.persisbale = True

        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()
        exe = Executor(place)
        exe.run(framework.default_startup_program())

        param_list = fluid.default_main_program().block(0).all_parameters()

        # process weight and bias
        gate_weight = []
        gate_bias = []

        for i in range(self.num_layers):
            gate_w_name = "basic_lstm_layers_" + str(i) + "/BasicLSTMUnit_0.w_0"
            gate_b_name = "basic_lstm_layers_" + str(i) + "/BasicLSTMUnit_0.b_0"

230 231 232 233 234 235
            gate_w = np.array(
                fluid.global_scope().find_var(gate_w_name).get_tensor())
            gate_w = np.random.uniform(-0.1, 0.1,
                                       size=gate_w.shape).astype('float32')
            fluid.global_scope().find_var(gate_w_name).get_tensor().set(
                gate_w, place)
236

237 238 239 240 241 242
            gate_b = np.array(
                fluid.global_scope().find_var(gate_b_name).get_tensor())
            gate_b = np.random.uniform(-0.1, 0.1,
                                       size=gate_b.shape).astype('float32')
            fluid.global_scope().find_var(gate_b_name).get_tensor().set(
                gate_b, place)
243 244 245 246 247 248 249 250 251 252 253

            gate_weight.append(gate_w)
            gate_bias.append(gate_b)

        if self.is_bidirect:
            for i in range(self.num_layers):
                gate_w_name = "basic_lstm_reverse_layers_" + str(
                    i) + "/BasicLSTMUnit_0.w_0"
                gate_b_name = "basic_lstm_reverse_layers_" + str(
                    i) + "/BasicLSTMUnit_0.b_0"

254 255 256 257
                gate_w = np.array(
                    fluid.global_scope().find_var(gate_w_name).get_tensor())
                gate_w = np.random.uniform(-0.1, 0.1,
                                           size=gate_w.shape).astype('float32')
258 259 260
                fluid.global_scope().find_var(gate_w_name).get_tensor().set(
                    gate_w, place)

261 262 263 264
                gate_b = np.array(
                    fluid.global_scope().find_var(gate_b_name).get_tensor())
                gate_b = np.random.uniform(-0.1, 0.1,
                                           size=gate_b.shape).astype('float32')
265 266 267 268 269 270
                fluid.global_scope().find_var(gate_b_name).get_tensor().set(
                    gate_b, place)

                gate_weight.append(gate_w)
                gate_bias.append(gate_b)

271 272 273
        step_input_np = np.random.uniform(
            -0.1, 0.1,
            (self.seq_len, self.batch_size, self.hidden_size)).astype('float32')
274 275 276 277
        sequence_length_np = np.random.randint(
            self.seq_len // 2, self.seq_len,
            size=(self.batch_size)).astype('int64')

278 279 280 281 282
        out = exe.run(feed={
            'x': step_input_np,
            'sequence_length': sequence_length_np
        },
                      fetch_list=[rnn_out, last_hidden, last_cell])
283 284 285 286 287

        api_rnn_out = out[0]
        api_last_hidden = out[1]
        api_last_cell = out[2]

288 289 290 291 292 293 294 295 296 297
        np_out = lstm_np(step_input_np,
                         None,
                         None,
                         self.hidden_size,
                         gate_weight,
                         gate_bias,
                         num_layers=self.num_layers,
                         batch_first=self.batch_first,
                         is_bidirect=self.is_bidirect,
                         sequence_length=sequence_length_np)
298

299 300 301 302 303 304 305 306 307
        np.testing.assert_allclose(api_rnn_out, np_out[0], rtol=0.0001, atol=0)
        np.testing.assert_allclose(api_last_hidden,
                                   np_out[1],
                                   rtol=0.0001,
                                   atol=0)
        np.testing.assert_allclose(api_last_cell,
                                   np_out[2],
                                   rtol=0.0001,
                                   atol=0)
308 309 310 311


if __name__ == '__main__':
    unittest.main()