reader.py 80.9 KB
Newer Older
S
sneaxiy 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from . import core
16
import sys
S
sneaxiy 已提交
17
import six
18
import numpy as np
S
sneaxiy 已提交
19
import threading
20
import paddle
21
import time
N
niuliling123 已提交
22
import copy
23

24 25 26 27 28 29 30 31 32 33 34
from .framework import (
    Program,
    Variable,
    program_guard,
    default_main_program,
    default_startup_program,
    _non_static_mode,
    cpu_places,
    _current_expected_place,
    _in_eager_without_dygraph_check,
)
S
sneaxiy 已提交
35
from .executor import global_scope
36
from .data_feeder import DataFeeder, BatchedTensorProvider
37 38 39 40 41 42 43
from .multiprocess_utils import (
    multiprocess_queue_set,
    CleanupFuncRegistrar,
    _cleanup_mmap,
    _cleanup,
    _set_SIGCHLD_handler,
)
44
from .dataloader import BatchSampler, Dataset, IterableDataset, Subset
45 46 47 48 49 50
from .dataloader.dataloader_iter import (
    _DataLoaderIterSingleProcess,
    _DataLoaderIterMultiProcess,
    _DatasetKind,
    default_collate_fn,
)
51
from .dataloader.batch_sampler import _InfiniteIterableSampler
52 53 54 55 56
from .layers.io import (
    monkey_patch_reader_methods,
    _copy_reader_var_,
    double_buffer,
)
S
sneaxiy 已提交
57
from .unique_name import UniqueNameGenerator
58
from .framework import _get_paddle_place, _get_paddle_place_list
59
from paddle.fluid.framework import _set_expected_place, _current_expected_place
60
import logging
61
import warnings
S
sneaxiy 已提交
62

63
### Dygraph DataLoader configs ###
64
import os
65 66
import multiprocessing
import signal
67

68
# NOTE: queue has a different name in python2 and python3
T
tianshuo78520a 已提交
69
import queue
70

71 72 73
# NOTE: [ avoid hanging & failed quickly ] These value is used in getting data from another process
QUEUE_GET_TIMEOUT = 60

74
__all__ = ['PyReader', 'DataLoader', 'default_collate_fn']
Z
Zeng Jinle 已提交
75 76

data_loader_unique_name_generator = UniqueNameGenerator()
S
sneaxiy 已提交
77

78
KEEP_DATA_LOADER_ORDER = True
79
USE_PINNED_MEMORY = None
80 81 82 83 84 85 86 87 88 89
# AutoTune Flags
USE_AUTOTUNE = False
TUNING_STEPS = 500


def set_autotune_config(use_autotune, tuning_steps=500):
    global USE_AUTOTUNE
    USE_AUTOTUNE = use_autotune
    global TUNING_STEPS
    TUNING_STEPS = tuning_steps
90 91 92 93 94 95 96 97 98 99


def keep_data_loader_order(*args):
    global KEEP_DATA_LOADER_ORDER
    if len(args) == 0:
        return KEEP_DATA_LOADER_ORDER
    else:
        assert len(args) == 1 and isinstance(args[0], bool)
        KEEP_DATA_LOADER_ORDER = args[0]

S
sneaxiy 已提交
100

101 102 103 104 105 106 107 108 109
def use_pinned_memory(*args):
    global USE_PINNED_MEMORY
    if len(args) == 0:
        return USE_PINNED_MEMORY
    else:
        assert len(args) == 1 and isinstance(args[0], bool)
        USE_PINNED_MEMORY = args[0]


S
sneaxiy 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
def _convert_places(places):
    if not isinstance(places, (list, tuple)):
        places = [places]

    ret = []
    for p in places:
        if not isinstance(p, core.Place):
            tmp = core.Place()
            tmp.set_place(p)
            p = tmp

        ret.append(p)
    return ret


125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
# NOTE(chenweihang): _reader_process_loop must be top level method to be pickled
def _reader_process_loop(batch_reader, data_queue):
    try:
        # set signal handler
        core._set_process_signal_handler()

        # NOTE: [ mmap files clear ] When the child process exits unexpectedly,
        # some shared memory objects may have been applied for but have not yet
        # been put into the inter-process Queue. This part of the object needs
        # to be cleaned up when the process ends.
        CleanupFuncRegistrar.register(_cleanup_mmap)

        for batch in batch_reader():
            tensor_list = core._convert_to_tensor_list(batch)
            data_queue.put(tensor_list)
            core._remove_tensor_list_mmap_fds(tensor_list)
        data_queue.put(None)
    except KeyboardInterrupt:
        # NOTE: Main process will raise KeyboardInterrupt anyways, ignore it in child process
        pass
    except:
        six.reraise(*sys.exc_info())


Z
Zeng Jinle 已提交
149 150 151
class DataLoaderBase(object):
    def __init__(self):
        self._places = None
S
sneaxiy 已提交
152

Z
Zeng Jinle 已提交
153 154
    def __call__(self):
        return self
S
sneaxiy 已提交
155

Z
Zeng Jinle 已提交
156 157
    def next(self):
        '''
158
        Get the next item in the DataLoader object. This method
Z
Zeng Jinle 已提交
159 160 161 162 163 164 165 166 167 168 169 170
        should not be called by users directly. It is used for
        implementing iterator protocol of Python 2.x inside
        PaddlePaddle framework.
        '''
        return self.__next__()

    def __iter__(self):
        raise NotImplementedError()

    def __next__(self):
        raise NotImplementedError()

171 172 173
    @classmethod
    def _check_input_array(cls, item):
        arr = np.asarray(item)
174
        if arr.dtype == np.object_:
175 176 177 178 179
            raise TypeError(
                "\n\tFaild to convert input data to a regular ndarray :\n\t* Usually "
                "this means the input data contains nested lists with different lengths. "
                "\n\t* Check the reader function passed to 'decorate_batch_generator'"
                " to locate the data causes this issue.\n\t* Please consider using "
180 181
                "'fluid.create_lod_tensor' to convert it to a LoD-Tensor."
            )
182 183
        return arr

Z
Zeng Jinle 已提交
184

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
class AuToTune(object):
    def __init__(self, loader):
        self.loader = loader
        self.max_num_worker = multiprocessing.cpu_count() / 2

    def __call__(self):
        # use default loader
        if (not USE_AUTOTUNE) or (not self.need_autotune()):
            return self.loader.num_workers

        # get autotune loader
        auto_tune_loader = self.get_autotune_loader()
        if auto_tune_loader is None:
            return self.loader.num_workers

        # pick the best num_workers
        auto_tune_start = time.time()
        logging.debug("========= DataLoader Auto Tune =========")
203 204 205
        logging.debug(
            "User config for DataLoader: " + str(self.loader.num_workers)
        )
206 207
        best_num_workers = 0
        min_cost = float("inf")
208 209 210
        logging.debug(
            "Tuning Range for num_workers: 0 ~ " + str(self.max_num_worker)
        )
211 212 213 214 215 216 217 218
        num_workers = 0
        while num_workers < self.max_num_worker:
            auto_tune_loader.num_workers = num_workers
            avg_cost = self.evaluate_reader_cost(auto_tune_loader)
            if min_cost * 0.75 > avg_cost:
                min_cost = avg_cost
                best_num_workers = num_workers
            else:
219 220 221 222 223 224
                update_num = self.is_best(
                    auto_tune_loader,
                    best_num_workers,
                    min_cost,
                    self.max_num_worker,
                )
225 226 227 228
                if update_num == best_num_workers:
                    break
                else:
                    best_num_workers = update_num
229 230 231 232 233 234
            logging.debug(
                "num_workers: "
                + str(num_workers)
                + " avg_cost: "
                + str(avg_cost)
            )
235
            num_workers += 2
236 237 238 239 240 241 242 243
        logging.info(
            "auto_tune dataLoader best_num_workers: " + str(best_num_workers)
        )
        logging.debug(
            "AutoTuning Cost for DataLoader: "
            + str(time.time() - auto_tune_start)
            + ' seconds'
        )
244 245 246 247 248

        # tune the default loader's num_workers
        return best_num_workers

    def need_autotune(self):
249
        if sys.platform == 'darwin' or sys.platform == 'win32':
250 251 252 253 254 255 256 257 258 259
            return False
        else:
            return True

    def get_sub_dataset(self, dataset, batch_size):
        num_samples = min(batch_size * TUNING_STEPS, len(dataset))
        sub_dataset = Subset(dataset, indices=list(range(num_samples)))
        return sub_dataset

    def get_autotune_loader(self):
N
niuliling123 已提交
260
        loader = copy.copy(self.loader)
261
        batch_size = self.loader.batch_sampler.batch_size
262 263 264
        if isinstance(
            self.loader.batch_sampler, paddle.io.DistributedBatchSampler
        ):
265 266 267 268 269 270 271 272
            dataset = self.loader.batch_sampler.dataset
            sub_dataset = self.get_sub_dataset(dataset, batch_size)
            loader.batch_sampler = paddle.io.DistributedBatchSampler(
                dataset=sub_dataset,
                batch_size=batch_size,
                num_replicas=self.loader.batch_sampler.nranks,
                rank=self.loader.batch_sampler.local_rank,
                shuffle=self.loader.batch_sampler.shuffle,
273 274
                drop_last=self.loader.batch_sampler.drop_last,
            )
275 276 277 278 279 280
        elif isinstance(self.loader.batch_sampler, paddle.io.BatchSampler):
            dataset = self.loader.batch_sampler.sampler.data_source
            sub_dataset = self.get_sub_dataset(dataset, batch_size)
            loader.batch_sampler = paddle.io.BatchSampler(
                dataset=sub_dataset,
                batch_size=batch_size,
281 282
                drop_last=self.loader.batch_sampler.drop_last,
            )
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
        else:
            loader = None
        return loader

    def evaluate_reader_cost(self, reader):
        costs = []
        avg_cost = 0
        start = time.time()
        for i, data in enumerate(reader):
            costs.append(time.time() - start)
            start = time.time()
        if len(costs) > 2:
            avg_cost = sum(costs[2:]) / len(costs[2:])
        else:
            avg_cost = sum(costs[0:]) / len(costs[0:])
        return avg_cost

    def is_best(self, reader, best_workers, best_time, num_work_boundary):
        step = 0
        num_workers = best_workers + 1
        boundary = 1
        while num_workers < num_work_boundary and step < 5:
            self.loader.num_workers = num_workers
            time = self.evaluate_reader_cost(reader)
307 308 309 310 311 312
            logging.debug(
                "for back num_workers: "
                + str(num_workers)
                + " avg_cost: "
                + str(time)
            )
313
            step += 1
314
            if time < best_time * 0.70 * boundary:
315 316 317 318 319 320 321
                return num_workers
            else:
                num_workers += 1
            boundary *= 0.80
        return best_workers


Z
Zeng Jinle 已提交
322
class DataLoader(object):
323 324 325 326 327 328 329 330
    """
    DataLoader prodives an iterator which iterates given dataset
    once by the batch_sampler.

    DataLoader supports single-process and multi-prcess data loading,
    multi-process workers will be used to load data asynchronously if
    :attr:`num_workers` is set as a positive number.

K
Kaipeng Deng 已提交
331
    DataLoader supports map-style dataset and iterable-style dataset.
332

K
Kaipeng Deng 已提交
333 334 335 336 337 338 339
    For map-style datast(can get a sample from dataset with a given
    index), please see :code:`paddle.io.Dataset`.

    For iterable-style datast(get samples from dataset iteratively,
    like a Python iterator), please see :code:`paddle.io.IterableDataset`.

    For :code:`batch_sampler` please see :code:`paddle.io.BatchSampler`
340

341 342 343 344 345 346
    .. note::
        GPU tensor operation is not supported in subprocess currently,
        please don't use GPU tensor operations in pipeline which will
        be performed in subprocess, such as dataset transforms, collte_fn,
        etc. Numpy array and CPU tensor operation is supported.

347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
    **Disable automatic batching**

    In certain cases such as some NLP tasks, instead of automatic batching,
    handling batching manually in dataset is needed by users. For these
    cases, automatic batching is disabled if both :attr:`batch_size` and
    :attr:`batch_sampler` is set as None, each data got from :attr:`dataset`
    should be batched data and will be processed with function define by
    :attr:`collate_fn` or :attr:`default_collate_fn`.


    .. note::
        When automatic batching is disabled, :attr:`default_collate_fn` will
        do nothing to data from dataset.


362
    Args:
363
        dataset(Dataset): the dataset to load data from, should be an
364 365
            instance of subclass of :code:`paddle.io.Dataset` or
            :code:`paddle.io.IterableDataset`.
366
        feed_list (list(Tensor)|tuple(Tensor), optional): feed Tensor list.
367
            The Tensors should be created by :code:`paddle.static.data()`.
368 369
            :attr:`feed_list` must be set if :attr:`return_list` is
            False. Default None.
370
        places(list(Place)|tuple(Place)|list(str), optional): a list of Place,
371
            to put data onto, :attr:`places` can be None, if
372
            :attr:`places` is None, default place(CPUPlace or CUDAPlace(0))
373 374 375
            will be used. Default None. If ``places`` is list of string,
            the string in the list can be ``cpu``, ``gpu:x`` and ``gpu_pinned``,
            where ``x`` is the index of the GPUs.
376
        return_list (bool, optional): whether the return value on each device is
377
            presented as a list. If :attr:`return_list=False`, the return
K
Kaipeng Deng 已提交
378
            value on each device would be a dict of str -> Tensor, where
379
            the key of the dict is the name of each fed Tensors. If
380
            :attr:`return_list=True`, the return value on each device would
K
Kaipeng Deng 已提交
381
            be a list(Tensor). :attr:`return_list` can only be True
382
            in dynamic graph mode. Default True.
383
        batch_sampler(BatchSampler, optional): an instance of `paddle.io.BatchSampler`
384 385
            to generate batch indices to draw samples from :attr:`dataset`
            and combine a batch. Default None.
386
        batch_size(int|None, optional): sample number in a mini-batch, a substitution
387 388 389 390
            parameter for :attr:`batch_sampler`, if :attr:`batch_sampler`
            is not set, a default `paddle.io.BatchSampler` will be used
            and initialize by :attr:`batch_size`, :attr:`shuffle` and
            :attr:`drop_last`. Default 1.
391
        shuffle(bool, optional): whther to shuffle indices order before genrate
392 393
            batch indices, a substitution parameter for :attr:`batch_sampler`
            see :attr:`batch_size`. Default False.
394
        drop_last(bool, optional): whether drop the last incomplete batch dataset size
395 396
            is not divisible by the batch size, a substitution parameter
            for :attr:`batch_sampler`, see :attr:`batch_size`. Default False
397
        collate_fn(callable, optional): function to generate mini-batch data by merging
398 399
            the sample list, None for only stack each fields of sample in axis
            0(same as :attr::`np.stack(..., axis=0)`). Default None
400
        num_workers(int, optional): the number of subprocess to load data, 0 for no
401
            subprocess used and loading data in main process. Default 0
402
        use_buffer_reader (bool, optional): whether to use bufferred reader.
403
            If use_buffer_reader=True, the DataLoader would prefetch
404
            batch data asynchronously, so it would speed up data feeding
405 406
            and occupies a little more CPU or GPU memory, i.e., the memory
            of one batch input data. Default True.
407 408 409
        prefetch_factor (int, optional): Number of batch data the DataLoader would prefetch
            if use_buffer_reader=True. Default 2.
        use_shared_memory (bool, optional): whether to use shared memory to speed up
410 411 412 413 414
            putting data into inter-process queue, set :attr:`use_shared_memory`
            as True only when the shared memory space on your machine(e.g.
            space of '/dev/shm' on Linux operating sysytem) is large enough.
            Shared memory will only be enabled in multi-process mode(num_workers
            > 0). Default True.
415
        timeout(int, optional): the timeout value for getting data form output queue
416
            of subprocesses. Default 0.
417
        worker_init_fn(callable, optional): init function which will be called with
418 419 420 421
            worker id on each subproces starting if not set as None. Default
            None.

    Returns:
422
        DataLoader: an iterable object for data iterating, each elemnet of the generated data is a Tensor.
423 424

    Examples:
425

426 427 428
        .. code-block:: python

            import numpy as np
429 430

            import paddle
K
Kaipeng Deng 已提交
431 432
            import paddle.nn as nn
            import paddle.nn.functional as F
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
            from paddle.io import Dataset, BatchSampler, DataLoader

            BATCH_NUM = 20
            BATCH_SIZE = 16
            EPOCH_NUM = 4

            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples

                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label

                def __len__(self):
                    return self.num_samples

455 456
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)

K
Kaipeng Deng 已提交
457
            class SimpleNet(nn.Layer):
458 459
                def __init__(self):
                    super(SimpleNet, self).__init__()
K
Kaipeng Deng 已提交
460
                    self.fc = nn.Linear(IMAGE_SIZE, CLASS_NUM)
461 462 463 464

                def forward(self, image, label=None):
                    return self.fc(image)

K
Kaipeng Deng 已提交
465 466 467
            simple_net = SimpleNet()
            opt = paddle.optimizer.SGD(learning_rate=1e-3,
                                      parameters=simple_net.parameters())
468 469

            loader = DataLoader(dataset,
K
Kaipeng Deng 已提交
470
                                batch_size=BATCH_SIZE,
471 472 473 474 475
                                shuffle=True,
                                drop_last=True,
                                num_workers=2)

            for e in range(EPOCH_NUM):
K
Kaipeng Deng 已提交
476 477 478 479 480 481 482 483
                for i, (image, label) in enumerate(loader()):
                    out = simple_net(image)
                    loss = F.cross_entropy(out, label)
                    avg_loss = paddle.mean(loss)
                    avg_loss.backward()
                    opt.minimize(avg_loss)
                    simple_net.clear_gradients()
                    print("Epoch {} batch {}: loss = {}".format(e, i, np.mean(loss.numpy())))
484 485


486 487 488 489
    .. note::
        For reading iterable dataset with multiprocess Dataloader,
        please see :code:`paddle.io.IterableDataset`

490 491
    """

492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
    def __init__(
        self,
        dataset,
        feed_list=None,
        places=None,
        return_list=True,
        batch_sampler=None,
        batch_size=1,
        shuffle=False,
        drop_last=False,
        collate_fn=None,
        num_workers=0,
        use_buffer_reader=True,
        prefetch_factor=2,
        use_shared_memory=True,
        timeout=0,
        worker_init_fn=None,
        persistent_workers=False,
    ):
511 512 513
        self.return_list = return_list
        self.collate_fn = collate_fn
        self.use_buffer_reader = use_buffer_reader
514
        self.prefetch_factor = prefetch_factor
515 516 517 518
        self.worker_init_fn = worker_init_fn

        self.dataset = dataset

J
Jiabin Yang 已提交
519
        if not return_list and not _non_static_mode():
520 521 522
            assert (
                feed_list is not None
            ), "feed_list should be set when return_list=False"
523 524
        self.feed_list = feed_list

525 526
        if places is None:
            places = _current_expected_place()
527 528 529 530
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
531 532 533
        self.places = _convert_places(places)

        assert num_workers >= 0, "num_workers should be a non-negative value"
534 535 536
        if num_workers > 0 and (
            sys.platform == 'darwin' or sys.platform == 'win32'
        ):
537
            warnings.warn(
538 539 540
                "DataLoader with multi-process mode is not supported on MacOs and Windows currently."
                " Please use signle-process mode with num_workers = 0 instead"
            )
541 542 543
            num_workers = 0
        self.num_workers = num_workers

544 545
        assert prefetch_factor > 0, "prefetch_factor should be a positive value"

546 547 548 549 550 551 552
        self.use_shared_memory = use_shared_memory
        if use_shared_memory and num_workers == 0:
            self.use_shared_memory = False

        assert timeout >= 0, "timeout should be a non-negative value"
        self.timeout = timeout

553 554 555 556
        if isinstance(dataset, IterableDataset):
            self.dataset_kind = _DatasetKind.ITER
            if shuffle:
                raise ValueError(
557 558 559 560
                    "IterableDataset not support shuffle, but got shuffle={}".format(
                        shuffle
                    )
                )
561 562
            if batch_sampler is not None:
                raise ValueError(
563 564
                    "IterableDataset expect unspecified batch_sampler"
                )
565 566 567
        else:
            self.dataset_kind = _DatasetKind.MAP

568
        if batch_sampler is not None:
569 570
            assert batch_size == 1 and not shuffle and not drop_last, (
                "batch_size/shuffle/drop_last should not be set when "
571
                "batch_sampler is given"
572
            )
573
            self.batch_sampler = batch_sampler
574 575 576 577
            self.batch_size = None
        elif batch_size is None:
            self.batch_sampler = None
            self.batch_size = None
578
        else:
579 580
            assert batch_size > 0, (
                "batch_size should be None or a positive value when "
581
                "batch_sampler is not given"
582
            )
583
            self.batch_size = batch_size
584
            if isinstance(dataset, IterableDataset):
585
                self.batch_sampler = _InfiniteIterableSampler(
586 587
                    dataset, batch_size
                )
588
            else:
589 590 591 592 593 594
                self.batch_sampler = BatchSampler(
                    dataset=dataset,
                    batch_size=batch_size,
                    shuffle=shuffle,
                    drop_last=drop_last,
                )
595

596
        self.drop_last = drop_last
597 598
        self.auto_collate_batch = self.batch_sampler is not None

599
        self.pin_memory = False
J
Jiabin Yang 已提交
600
        if _non_static_mode():
601 602 603
            self.pin_memory = (
                True if use_pinned_memory() is None else use_pinned_memory()
            )
604

K
Kaipeng Deng 已提交
605 606
        self._persistent_workers = persistent_workers
        self._iterator = None
607
        self.num_workers = AuToTune(self).__call__()
K
Kaipeng Deng 已提交
608

609
    def __len__(self):
610 611 612
        if self.dataset_kind == _DatasetKind.ITER:
            raise ValueError("length of IterableDataset not supported")
        else:
613
            if self.auto_collate_batch:
614
                return len(self.batch_sampler)
615 616
            else:
                return len(self.dataset)
617 618 619 620

    def __iter__(self):
        if self.num_workers == 0:
            return _DataLoaderIterSingleProcess(self)
K
Kaipeng Deng 已提交
621 622 623 624 625 626
        elif self._persistent_workers:
            if self._iterator is None:
                self._iterator = _DataLoaderIterMultiProcess(self)
            else:
                self._iterator._reset()
            return self._iterator
627 628 629 630 631 632
        else:
            return _DataLoaderIterMultiProcess(self)

    def __call__(self):
        return self.__iter__()

Z
Zeng Jinle 已提交
633
    @staticmethod
634 635 636 637 638 639 640 641 642
    def from_generator(
        feed_list=None,
        capacity=None,
        use_double_buffer=True,
        iterable=True,
        return_list=False,
        use_multiprocess=False,
        drop_last=True,
    ):
Z
Zeng Jinle 已提交
643
        """
K
Kaipeng Deng 已提交
644 645 646 647
        .. warning::
          This API will be deprecated in the future, it is recommended to use
          :code:`paddle.io.DataLoader` which supports multi-processes acceleration.

648 649 650
        .. note::
          **The framework ensures that the data loading order of DataLoader is exactly the same as the user-defined data source.**

651
        Create a DataLoader object for loading data from Python generator.
Z
Zeng Jinle 已提交
652 653 654 655
        Data would be prefetched using Python thread and be pushed
        into a queue asynchronously.

        The created DataLoader object provides 3 methods to set the data source
656
        :code:`set_sample_generator` , :code:`set_sample_list_generator` and
Z
Zeng Jinle 已提交
657 658
        :code:`set_batch_generator` . Please see the following example codes
        to know their usages.
659

Z
Zeng Jinle 已提交
660 661 662
        If iterable = True, the created DataLoader object is a Python generator
        object, which is iterable using for-range loop.

663
        If iterable = False, the created DataLoader object provides
Z
Zeng Jinle 已提交
664
        :code:`start()` and :code:`reset()` method to control the data reading
665
        process.
Z
Zeng Jinle 已提交
666

667
        Args:
668 669
            feed_list (list(Tensor)|tuple(Tensor)): feed Tensor list.
                The Tensors should be created by :code:`fluid.data()`.
Z
Zeng Jinle 已提交
670
            capacity (int): capacity of the queue maintained in DataLoader.
671 672 673 674 675
                The unit is batch number. Set larger capacity if your reader
                is fast.
            use_double_buffer (bool): whether to use double_buffer_reader.
                If use_double_buffer=True, the DataLoader would prefetch next
                batch data asynchronously, so it would speed up data feeding
Z
Zeng Jinle 已提交
676
                and occupies a little more CPU or GPU memory, i.e., the memory
677 678 679 680 681 682 683
                of one batch input data.
            iterable (bool): whether the created DataLoader is iterable.
            return_list (bool): whether the return value on each device is
                presented as a list. It is only valid when iterable=True.
                If return_list=False, the return value on each device would
                be a dict of str -> LoDTensor, where the key of the dict is
                the name of each fed Tensors. If return_list=True, the
Z
Zeng Jinle 已提交
684 685
                return value on each device would be a list(LoDTensor). It is
                recommended to use return_list=False in static graph mode and
686
                use return_list=True in dygraph mode.
687 688 689 690 691
            use_multiprocess (bool): whether to use multi-process to speed up
                the data loading process in dygraph. Note: this parameter only
                can be used in the dygraph mode. In the static graph mode,
                whether this parameter is set or not has no effect.
                The Default value is False.
692
            drop_last (bool): whether to drop the last batches whose number is
693
                less than the CPU core/GPU card number. The default value is
694
                True. In training phase, users should not set drop_last=False,
695
                because all CPU cores/GPU cards must read data from DataLoader.
696 697
                In inference phase, users can set drop_last=False, so that the
                last batches whose number is less than the CPU core/GPU card
698
                number can be tested.
Z
Zeng Jinle 已提交
699 700 701 702

        Returns:
            loader (DataLoader): the created DataLoader object.

703
        Examples 1:
704

Z
Zeng Jinle 已提交
705
            .. code-block:: python
S
sneaxiy 已提交
706

707 708 709
                '''
                Example in static graph mode
                '''
Z
Zeng Jinle 已提交
710
                import numpy as np
711

712 713 714 715 716
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F


717
                BATCH_NUM = 10
Z
Zeng Jinle 已提交
718 719 720 721 722 723 724 725
                BATCH_SIZE = 16
                EPOCH_NUM = 4

                CLASS_NUM = 10

                ITERABLE = True # whether the created DataLoader object is iterable
                USE_GPU = False # whether to use GPU

726
                DATA_FORMAT = 'batch_generator' # data format of data source user provides
Z
Zeng Jinle 已提交
727

728 729
                paddle.enable_static()

Z
Zeng Jinle 已提交
730
                def simple_net(image, label):
731 732 733 734
                    fc_tmp = static.nn.fc(image, size=CLASS_NUM)
                    cross_entropy = F.softmax_with_cross_entropy(image, label)
                    loss = paddle.mean(cross_entropy)
                    sgd = paddle.optimizer.SGD(learning_rate=1e-3)
Z
Zeng Jinle 已提交
735 736 737 738 739 740 741 742 743 744
                    sgd.minimize(loss)
                    return loss

                def get_random_images_and_labels(image_shape, label_shape):
                    image = np.random.random(size=image_shape).astype('float32')
                    label = np.random.random(size=label_shape).astype('int64')
                    return image, label

                # If the data generator yields one sample each time,
                # use DataLoader.set_sample_generator to set the data source.
745
                def sample_generator_creator():
Z
Zeng Jinle 已提交
746 747 748 749 750 751 752 753 754 755 756
                    def __reader__():
                        for _ in range(BATCH_NUM * BATCH_SIZE):
                            image, label = get_random_images_and_labels([784], [1])
                            yield image, label

                    return __reader__

                # If the data generator yield list of samples each time,
                # use DataLoader.set_sample_list_generator to set the data source.
                def sample_list_generator_creator():
                    def __reader__():
757
                        for _ in range(BATCH_NUM):
Z
Zeng Jinle 已提交
758 759 760 761 762 763 764
                            sample_list = []
                            for _ in range(BATCH_SIZE):
                                image, label = get_random_images_and_labels([784], [1])
                                sample_list.append([image, label])

                            yield sample_list

765
                    return __reader__
Z
Zeng Jinle 已提交
766

767
                # If the data generator yields a batch each time,
Z
Zeng Jinle 已提交
768 769 770 771
                # use DataLoader.set_batch_generator to set the data source.
                def batch_generator_creator():
                    def __reader__():
                        for _ in range(BATCH_NUM):
772
                            batch_image, batch_label = get_random_images_and_labels([BATCH_SIZE, 784], [BATCH_SIZE, 1])
Z
Zeng Jinle 已提交
773
                            yield batch_image, batch_label
H
Huihuang Zheng 已提交
774

Z
Zeng Jinle 已提交
775
                    return __reader__
776

777
                # If DataLoader is iterable, use for loop to train the network
Z
Zeng Jinle 已提交
778 779 780 781
                def train_iterable(exe, prog, loss, loader):
                    for _ in range(EPOCH_NUM):
                        for data in loader():
                            exe.run(prog, feed=data, fetch_list=[loss])
782

783
                # If DataLoader is not iterable, use start() and reset() method to control the process
Z
Zeng Jinle 已提交
784 785 786 787 788 789
                def train_non_iterable(exe, prog, loss, loader):
                    for _ in range(EPOCH_NUM):
                        loader.start() # call DataLoader.start() before each epoch starts
                        try:
                            while True:
                                exe.run(prog, fetch_list=[loss])
790
                        except paddle.core.EOFException:
791
                            loader.reset() # call DataLoader.reset() after catching EOFException
Z
Zeng Jinle 已提交
792 793 794 795 796 797 798 799 800 801

                def set_data_source(loader, places):
                    if DATA_FORMAT == 'sample_generator':
                        loader.set_sample_generator(sample_generator_creator(), batch_size=BATCH_SIZE, drop_last=True, places=places)
                    elif DATA_FORMAT == 'sample_list_generator':
                        loader.set_sample_list_generator(sample_list_generator_creator(), places=places)
                    elif DATA_FORMAT == 'batch_generator':
                        loader.set_batch_generator(batch_generator_creator(), places=places)
                    else:
                        raise ValueError('Unsupported data format')
802

803 804
                image = static.data(name='image', shape=[None, 784], dtype='float32')
                label = static.data(name='label', shape=[None, 1], dtype='int64')
805

806
                # Define DataLoader
807
                loader = paddle.io.DataLoader.from_generator(feed_list=[image, label], capacity=16, iterable=ITERABLE)
808

Z
Zeng Jinle 已提交
809 810
                # Define network
                loss = simple_net(image, label)
S
sneaxiy 已提交
811

Z
Zeng Jinle 已提交
812 813
                # Set data source of DataLoader
                #
814 815 816 817
                # If DataLoader is iterable, places must be given and the number of places must be the same with device number.
                #  - If you are using GPU, call `paddle.static.cuda_places()` to get all GPU places.
                #  - If you are using CPU, call `paddle.static.cpu_places()` to get all CPU places.
                #
Z
Zeng Jinle 已提交
818
                # If DataLoader is not iterable, places can be None.
819
                places = static.cuda_places() if USE_GPU else static.cpu_places()
Z
Zeng Jinle 已提交
820
                set_data_source(loader, places)
S
sneaxiy 已提交
821

822 823
                exe = static.Executor(places[0])
                exe.run(static.default_startup_program())
H
Huihuang Zheng 已提交
824

825
                prog = static.CompiledProgram(static.default_main_program()).with_data_parallel(loss_name=loss.name)
826

Z
Zeng Jinle 已提交
827 828 829 830 831 832
                if loader.iterable:
                    train_iterable(exe, prog, loss, loader)
                else:
                    train_non_iterable(exe, prog, loss, loader)


833 834 835 836
        Examples 2:

            .. code-block:: python

Z
Zeng Jinle 已提交
837
                '''
838
                Example in dynamic graph mode.
Z
Zeng Jinle 已提交
839
                '''
840
                import numpy as np
841

842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
                import paddle
                import paddle.nn as nn
                import paddle.optimizer as opt
                import paddle.distributed as dist

                BATCH_SIZE = 16
                BATCH_NUM = 4
                EPOCH_NUM = 4

                IMAGE_SIZE = 784
                CLASS_NUM = 10

                USE_GPU = False # whether to use GPU

                def _get_random_images_and_labels(image_shape, label_shape):
                        image = np.random.random(size=image_shape).astype('float32')
                        label = np.random.random(size=label_shape).astype('int64')
                        return image, label

                def __reader__():
                        for _ in range(BATCH_NUM):
                            batch_image, batch_label = _get_random_images_and_labels(
                                [BATCH_SIZE, IMAGE_SIZE], [BATCH_SIZE, CLASS_NUM])
                            yield batch_image, batch_label

                def random_batch_reader():
                    return __reader__

                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)

                    @paddle.jit.to_static
                    def forward(self, x):
                        return self._linear(x)

                # set device
                paddle.set_device('gpu' if USE_GPU else 'cpu')

                # create network
                layer = LinearNet()
                dp_layer = paddle.DataParallel(layer)
                loss_fn = nn.CrossEntropyLoss()
                adam = opt.Adam(learning_rate=0.001, parameters=dp_layer.parameters())

                # create data loader
                loader = paddle.io.DataLoader.from_generator(capacity=5)
                loader.set_batch_generator(random_batch_reader())

                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)

                        loss.backward()

                        adam.step()
                        adam.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

        Examples 3:
905 906 907

            .. code-block:: python

908 909 910 911 912
                '''
                Example of `drop_last` using in static graph multi-cards mode
                '''
                import paddle
                import paddle.static as static
913 914 915
                import numpy as np
                import os

916
                # We use 2 CPU cores to run inference network
917 918
                os.environ['CPU_NUM'] = '2'

919 920
                paddle.enable_static()

921 922
                # The data source has only 3 batches, which can not be
                # divided evenly to each CPU core
923
                def batch_generator():
924
                    for i in range(3):
925
                        yield np.array([i+1]).astype('float32'),
926

927
                x = static.data(name='x', shape=[None], dtype='float32')
928 929
                y = x * x

930
                def run_inference(drop_last):
931
                    loader = paddle.io.DataLoader.from_generator(feed_list=[x],
932
                            capacity=8, drop_last=drop_last)
933
                    loader.set_batch_generator(batch_generator, static.cpu_places())
934

935 936
                    exe = static.Executor(paddle.CPUPlace())
                    prog = static.CompiledProgram(static.default_main_program())
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
                    prog = prog.with_data_parallel()

                    result = []
                    for data in loader():
                        each_ret, = exe.run(prog, feed=data, fetch_list=[y])
                        result.extend(each_ret)
                    return result

                # Set drop_last to True, so that the last batch whose
                # number is less than CPU core number would be discarded.
                print(run_inference(drop_last=True)) # [1.0, 4.0]

                # Set drop_last to False, so that the last batch whose
                # number is less than CPU core number can be tested.
                print(run_inference(drop_last=False)) # [1.0, 4.0, 9.0]
Z
Zeng Jinle 已提交
952
        """
J
Jiabin Yang 已提交
953
        if _non_static_mode():
954 955 956 957 958 959 960 961
            return DygraphGeneratorLoader(
                feed_list,
                capacity,
                use_double_buffer,
                iterable,
                return_list,
                use_multiprocess,
            )
962
        else:
963 964 965 966 967 968 969 970
            return GeneratorLoader(
                feed_list,
                capacity,
                use_double_buffer,
                iterable,
                return_list,
                drop_last,
            )
Z
Zeng Jinle 已提交
971 972 973 974

    @staticmethod
    def from_dataset(dataset, places, drop_last=True):
        """
K
Kaipeng Deng 已提交
975 976 977 978
        .. warning::
          This API will be deprecated in the future, it is recommended to use
          :code:`paddle.io.DataLoader` which supports multi-processes acceleration.

979
        Create an iterable DataLoader object for loading data from Dataset.
Z
Zeng Jinle 已提交
980
        Dataset is only supported in Linux system currently.
981

Z
Zeng Jinle 已提交
982 983
        Args:
            dataset (InMemoryDataset|QueueDataset): the dataset object.
984 985 986 987
            places (list(CUDAPlace)|list(CPUPlace)|list(str)): places where the result
                data should be converted. If places is list of string, the string in the list
                can be ``cpu``, ``gpu:x`` and ``gpu_pinned``, where x is the index of the GPUs.
            drop_last (bool): whether to drop the last batch whose sample
Z
Zeng Jinle 已提交
988
                number is less than batch size. If drop_last = True, they
989
                would be dropped. If drop_last = False, they would be kept.
990

Z
Zeng Jinle 已提交
991
        Returns:
992 993
            loader (DataLoader): the created DataLoader object, which can be
                treated as a Python generator.
994

Z
Zeng Jinle 已提交
995 996 997
        Examples:

            .. code-block:: python
998

999 1000 1001 1002
                import paddle
                import paddle.static as static

                paddle.enable_static()
1003

1004 1005
                image = static.data(name='image', shape=[None, 784], dtype='float32')
                label = static.data(name='label', shape=[None, 1], dtype='int64')
1006

1007 1008 1009 1010 1011
                dataset = paddle.distributed.QueueDataset()
                dataset.init(
                    batch_size=32,
                    pipe_command='cat',
                    use_var=[image, label])
Z
Zeng Jinle 已提交
1012
                dataset.set_filelist(['a.txt', 'b.txt', 'c.txt'])
1013

1014
                loader = paddle.io.DataLoader.from_dataset(dataset, static.cpu_places())
Z
Zeng Jinle 已提交
1015 1016
        """
        return DatasetLoader(dataset, places, drop_last)
S
sneaxiy 已提交
1017

S
sneaxiy 已提交
1018

1019 1020 1021 1022
class DygraphGeneratorLoader(DataLoaderBase):
    """
    The GeneratorLoader of dygraph

1023
    The multiprocess dygraph GeneratorLoader's most functions are different from
1024 1025 1026
    static graph GeneratorLoader, Separate implementation to keep code readable.
    """

1027 1028 1029 1030 1031 1032 1033 1034 1035
    def __init__(
        self,
        feed_list=None,
        capacity=None,
        use_double_buffer=True,
        iterable=True,
        return_list=True,
        use_multiprocess=False,
    ):
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
        self._batch_reader = None
        self._places = None
        self._feed_list = feed_list

        if not capacity:
            raise ValueError("Please give value to capacity.")
        self._capacity = capacity
        self._use_double_buffer = use_double_buffer

        if not iterable:
1046 1047
            warnings.warn(
                "Please NOTE: DygraphGeneratorLoader supports iterable mode only. Change to iterable mode."
1048 1049 1050
            )
        self._iterable = True
        if not return_list:
1051 1052
            warnings.warn(
                "Please NOTE: DygraphGeneratorLoader supports returning as list only. Change to return as list."
1053 1054 1055 1056 1057
            )
        self._return_list = True

        # NOTE: the multiprocessing in different platform is incompatible, we will solve it later
        self._use_multiprocess = use_multiprocess
1058 1059 1060
        if self._use_multiprocess and (
            sys.platform == 'darwin' or sys.platform == 'win32'
        ):
1061 1062
            warnings.warn(
                "NOTE: DygraphGeneratorLoader with multiprocess mode is not currently supported on MacOs and Windows."
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
            )
            self._use_multiprocess = False

        if self._use_multiprocess:
            # NOTE: the multiprocessing.Queue used to save loading data in self._process
            self._data_queue = None
            # NOTE: this process is used to load data asynchronously from self._batch_reader
            self._process = None

        # NOTE: the C++ LoDTensorBlockingQueue instance
        self._blocking_queue = None
        # NOTE: 1. In multiprocess mode, this thread is used to get next batch data from
        # self._data_queue, then push it into self._blocking_queue; 2. In singleprocess
1076
        # mode, this thread is used to get next batch data from self._batch_reader, then
1077 1078
        # push it into self._blocking_queue
        self._thread = None
1079 1080 1081
        self._pin_memory = (
            True if use_pinned_memory() is None else use_pinned_memory()
        )
1082 1083 1084 1085 1086 1087 1088 1089 1090

    @property
    def queue(self):
        return self._blocking_queue

    @property
    def iterable(self):
        return self._iterable

1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
    def _clear_and_remove_data_queue(self):
        if self._data_queue is not None:
            while True:
                try:
                    self._data_queue.get_nowait()
                except queue.Empty:
                    break
            global multiprocess_queue_set
            multiprocess_queue_set.remove(self._data_queue)

1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
    def _wait_thread_ends(self):
        thread = self._thread
        if thread is not None:
            self._blocking_queue.close()
            thread.join()

    def _wait_process_ends(self):
        process = self._process
        if process is not None:
            process.join()
            # erase process id
1112
            core._erase_process_pids(id(self))
1113

1114 1115 1116 1117 1118 1119 1120 1121 1122
    def _init_iterable(self):
        self._wait_thread_ends()
        if self._use_multiprocess:
            self._wait_process_ends()
        self._var_names = []
        self._shapes = []
        self._dtypes = []
        self._need_check_feed = []
        self._blocking_queue = core.init_lod_tensor_blocking_queue(
1123 1124
            core.Variable(), self._capacity, False
        )
1125
        self._reader = None
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
        self._reader = core.create_py_reader(
            self.queue,
            self._var_names,
            self._shapes,
            self._dtypes,
            self._need_check_feed,
            self._places,
            self._use_double_buffer,
            True,
            self._pin_memory,
        )
1137 1138 1139

    def _start(self):
        if self._use_multiprocess:
1140 1141 1142
            # clear old _data_queue and remove it from multiprocess_queue_set
            self._clear_and_remove_data_queue()
            # set data_queue and process
1143
            self._data_queue = multiprocessing.Queue(self._capacity)
1144 1145 1146
            # add _data_queue into global queue set
            global multiprocess_queue_set
            multiprocess_queue_set.add(self._data_queue)
1147 1148 1149 1150
            self._process = multiprocessing.Process(
                target=_reader_process_loop,
                args=(self._batch_reader, self._data_queue),
            )
1151 1152 1153 1154 1155
            self._process.daemon = True
            self._process.start()

            # Set child process signal handler
            # NOTE: [ avoiding hang ] 1. if the child process dies due to bus error/segfault
1156
            # or just hang, the main process will hang waiting for data, so here need to deal
1157
            # with SIGSEGV and SIGBUS of child process; 2. if the main process end before child
1158
            # process, it shuts the all its daemonic children down with a SIGTERM (instead of
1159
            # joining them without a timeout), so here nedd to deal with SIGTERM.
1160 1161
            core._set_process_pids(id(self), [self._process.pid])
            _set_SIGCHLD_handler()
1162 1163 1164 1165

            # Set reader_thread
            self._thread_done_event = threading.Event()
            self._thread = threading.Thread(
1166
                target=self._reader_thread_loop_for_multiprocess,
1167 1168
                args=(_current_expected_place(),),
            )
1169 1170 1171
            self._thread.daemon = True
            self._thread.start()
        else:
1172
            self._thread = threading.Thread(
1173
                target=self._reader_thread_loop_for_singleprocess,
1174 1175
                args=(_current_expected_place(),),
            )
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
            self._thread.daemon = True
            self._thread.start()

    def _reset(self):
        self._reader.reset()
        self._wait_thread_ends()
        if self._use_multiprocess:
            self._wait_process_ends()

    def __iter__(self):
        assert self.iterable, "DataLoader is not iterable"
1187 1188 1189
        assert (
            self._batch_reader is not None
        ), "Data source of DataLoader has not set yet"
1190 1191 1192 1193 1194 1195 1196

        self._init_iterable()
        self._start()
        return self

    def __next__(self):
        try:
J
Jiabin Yang 已提交
1197
            if _in_eager_without_dygraph_check():
1198
                return core.eager.read_next_tensor_list(
1199 1200
                    self._reader.read_next_list()[0]
                )
1201 1202
            else:
                return self._reader.read_next_var_list()
1203 1204 1205 1206
        except StopIteration:
            self._reset()
            six.reraise(*sys.exc_info())

1207 1208 1209 1210 1211 1212 1213 1214 1215
    def _exit_thread_expectedly(self):
        self._thread_done_event.set()
        self._blocking_queue.close()

    def _exit_thread_unexpectedly(self):
        self._thread_done_event.set()
        self._blocking_queue.kill()
        logging.error("DataLoader reader thread raised an exception!")

1216 1217
    def _reader_thread_loop_for_multiprocess(self, legacy_expected_place):
        # See _DataLoaderIterSingleProcess._thread_loop() for why set expected place here.
L
Leo Chen 已提交
1218
        core.set_current_thread_name("Dataloader_" + str(id(self)))
1219 1220
        _set_expected_place(legacy_expected_place)

1221 1222
        while not self._thread_done_event.is_set():
            try:
1223 1224 1225 1226
                # NOTE: [ avoid hanging ] Even with carefully designed data dependencies
                # (i.e., a put() always corresponding to a get()), hanging on get() can
                # still happen when data in queue is corrupted (e.g., due to
                # Queue.cancel_join_thread or unexpected exit). So we set a timeout whenever
1227
                # we try to get data from `data_queue`
1228 1229 1230 1231 1232 1233 1234
                # NOTE: [ avoid failed quickly ] Here, the time setting of QUEUE_GET_TIMEOUT
                # is relatively long, currently it is 60 seconds, because in some models,
                # if the reader child process starts with a heavy burden, the child process
                # has no enough time to put the data in the queue when the main process
                # start trying to get data from queue. At this time, the child thread needs
                # to wait slightly longer
                tensor_list = self._data_queue.get(timeout=QUEUE_GET_TIMEOUT)
1235 1236 1237 1238
            except:
                # NOTE [ avoid handing ] After adding the shared memory mechanism, not only
                # the queue.Empty exception will occur here, but other exceptions will also
                # occur, such as mmap failure. If it is not handled here, it will hang.
1239
                self._exit_thread_unexpectedly()
1240 1241
                logging.error(
                    "DataLoader reader thread failed to read data from the multiprocessing.Queue."
1242
                )
1243
                six.reraise(*sys.exc_info())
1244 1245

            if not self._thread_done_event.is_set():
1246
                if tensor_list is not None:
1247 1248
                    try:
                        array = core.LoDTensorArray()
1249 1250
                        for tensor in tensor_list:
                            array.append(tensor)
1251 1252 1253
                        if not self._blocking_queue.push(array):
                            self._blocking_queue.close()
                    except:
1254
                        self._exit_thread_unexpectedly()
1255 1256
                        six.reraise(*sys.exc_info())
                else:
1257
                    self._exit_thread_expectedly()
1258

1259
    def _reader_thread_loop_for_singleprocess(self, legacy_expected_place):
1260
        try:
1261
            # See _DataLoaderIterSingleProcess._thread_loop() for why set expected place here.
L
Leo Chen 已提交
1262
            core.set_current_thread_name("Dataloader_" + str(id(self)))
1263 1264
            _set_expected_place(legacy_expected_place)

1265 1266 1267 1268
            for sample in self._batch_reader():
                array = core.LoDTensorArray()
                for item in sample:
                    if not isinstance(item, core.LoDTensor):
1269
                        item = self._check_input_array(item)
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
                        tmp = core.LoDTensor()
                        tmp.set(item, core.CPUPlace())
                        item = tmp

                    array.append(item)

                if not self._blocking_queue.push(array):
                    break

            self._blocking_queue.close()
            self._thread = None
        except Exception:
            self._blocking_queue.kill()
            self._thread = None
            logging.warning(
1285 1286
                "DygraphDataLoader reader thread raised an exception."
            )
1287 1288
            six.reraise(*sys.exc_info())

1289 1290 1291
    def set_sample_generator(
        self, reader, batch_size, drop_last=True, places=None
    ):
1292
        assert batch_size > 0, "batch_size must be larger than 0"
1293 1294 1295 1296
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
1297 1298 1299 1300
        self.set_sample_list_generator(
            paddle.batch(reader, batch_size=batch_size, drop_last=drop_last),
            places=places,
        )
1301 1302 1303
        return self

    def set_sample_list_generator(self, reader, places=None):
1304 1305 1306 1307 1308
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)

1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
        def __batch_reader_impl__():
            for batch in reader():
                slots = []
                for items in batch:
                    for i, item in enumerate(items):
                        if len(slots) < len(items):
                            slots.append([item])
                        else:
                            slots[i].append(item)
                yield slots

        self.set_batch_generator(__batch_reader_impl__, places)
        return self

    def set_batch_generator(self, reader, places=None):
1324 1325 1326 1327
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
1328
        self._batch_reader = reader
1329 1330
        if places is None:
            places = _current_expected_place()
1331
        self._places = _convert_places(places)
1332 1333 1334
        assert (
            len(self._places) == 1
        ), "Number of places must be 1 in imperative mode"
1335 1336 1337
        return self


Z
Zeng Jinle 已提交
1338
class GeneratorLoader(DataLoaderBase):
1339 1340 1341 1342 1343 1344 1345 1346 1347
    def __init__(
        self,
        feed_list=None,
        capacity=None,
        use_double_buffer=True,
        iterable=True,
        return_list=False,
        drop_last=True,
    ):
S
sneaxiy 已提交
1348
        self._tensor_reader = None
Z
Zeng Jinle 已提交
1349
        self._places = None
S
sneaxiy 已提交
1350
        self._thread = None
1351
        self._queue = None
1352
        self._feed_list = feed_list
1353 1354 1355
        self._exited = False
        self._drop_last = drop_last
        self._keep_order = keep_data_loader_order()
1356 1357
        if not capacity:
            raise ValueError("Please give value to capacity.")
1358 1359 1360 1361
        self._iterable = iterable
        self._return_list = return_list
        if not self._feed_list:
            raise Exception("Feed list must be given under static mode.")
S
sneaxiy 已提交
1362 1363 1364 1365
        self._use_double_buffer = use_double_buffer
        self._capacity = capacity
        if not self._iterable:
            self._init_non_iterable()
S
sneaxiy 已提交
1366

Z
Zeng Jinle 已提交
1367
    def _wait_thread_ends(self):
1368
        # Get self._thread first to prevent data race, because __thread_main__
Z
Zeng Jinle 已提交
1369 1370 1371 1372 1373 1374 1375 1376
        # would set self._thread be None at the end
        thread = self._thread
        if thread is not None and self._iterable:
            self._queue.close()
            thread.join()

    def _init_iterable(self):
        self._wait_thread_ends()
1377 1378 1379 1380 1381 1382
        self._var_names = [v.name for v in self._feed_list]
        self._shapes = [v.shape for v in self._feed_list]
        self._dtypes = [v.dtype for v in self._feed_list]
        self._need_check_feed = [
            v.desc.need_check_feed() for v in self._feed_list
        ]
1383
        self._queue = core.init_lod_tensor_blocking_queue(
1384 1385
            core.Variable(), self._capacity, self._keep_order
        )
1386
        self._reader = None
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
        self._reader = core.create_py_reader(
            self.queue,
            self._var_names,
            self._shapes,
            self._dtypes,
            self._need_check_feed,
            self._places,
            self._use_double_buffer,
            self._drop_last,
            False,
        )
S
sneaxiy 已提交
1398 1399 1400 1401 1402 1403 1404

    def _init_non_iterable(self):
        lod_levels = []
        dtypes = []
        shape_concat = []
        ranks = []
        shapes = []
1405
        need_check_feed = []
S
sneaxiy 已提交
1406 1407 1408 1409 1410 1411 1412

        for feed_data in self._feed_list:
            dtypes.append(feed_data.dtype)
            shape_concat.extend(feed_data.shape)
            ranks.append(len(feed_data.shape))
            shapes.append(feed_data.shape)
            lod_levels.append(feed_data.lod_level)
1413
            need_check_feed.append(int(feed_data.desc.need_check_feed()))
S
sneaxiy 已提交
1414

Z
Zeng Jinle 已提交
1415
        queue_name = data_loader_unique_name_generator(
1416 1417
            'lod_tensor_blocking_queue'
        )
Z
Zeng Jinle 已提交
1418 1419
        reader_name = data_loader_unique_name_generator('create_py_reader')
        double_buffer_name = data_loader_unique_name_generator('double_buffer')
S
sneaxiy 已提交
1420

S
sneaxiy 已提交
1421
        var = global_scope().var(queue_name)
1422
        self._queue = core.init_lod_tensor_blocking_queue(
1423 1424
            var, self._capacity, self._keep_order
        )
1425 1426 1427 1428 1429

        if self._keep_order:
            block = default_main_program().current_block()
        else:
            block = default_startup_program().current_block()
S
sneaxiy 已提交
1430

1431
        reader_var = block.create_var(name=reader_name)
S
sneaxiy 已提交
1432

1433
        dtype_int = [int(t) for t in dtypes]
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
        block.append_op(
            type='create_py_reader',
            inputs={'blocking_queue': [queue_name]},
            outputs={'Out': [reader_var]},
            attrs={
                'shape_concat': shape_concat,
                'lod_levels': lod_levels,
                'dtypes': dtype_int,
                'need_check_feed': need_check_feed,
                'ranks': ranks,
            },
        )
S
sneaxiy 已提交
1446

1447 1448 1449
        reader_var.desc.set_dtypes(dtypes)
        reader_var.persistable = True
        reader_var.stop_gradient = True
S
sneaxiy 已提交
1450

1451 1452 1453 1454 1455 1456
        if self._keep_order:
            main_prog_var = reader_var
            reader = main_prog_var
            reader.reset = self._queue.reset
        else:
            main_prog_var = _copy_reader_var_(
1457 1458
                default_main_program().current_block(), reader_var
            )
1459 1460 1461

            main_prog_var.stop_gradient = True
            main_prog_var.persistable = True
S
sneaxiy 已提交
1462

1463
            reader = monkey_patch_reader_methods(main_prog_var)
S
sneaxiy 已提交
1464 1465

        if self._use_double_buffer:
1466 1467 1468
            double_buffer_reader = double_buffer(
                reader, name=double_buffer_name
            )
S
sneaxiy 已提交
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
            # we return a double buffer reader. However, the reset method comes from
            # py_reader.
            double_buffer_reader.reset = reader.reset
            reader = double_buffer_reader

        self._reader = reader

        default_main_program().current_block().append_op(
            type='read',
            inputs={'Reader': [self._reader]},
1479
            outputs={'Out': self._feed_list},
1480 1481
            attrs={'drop_last': self._drop_last},
        )
S
sneaxiy 已提交
1482 1483 1484 1485 1486 1487 1488 1489

    @property
    def queue(self):
        return self._queue

    @property
    def iterable(self):
        return self._iterable
S
sneaxiy 已提交
1490

Z
Zeng Jinle 已提交
1491 1492
    def __iter__(self):
        assert self.iterable, "DataLoader is not iterable"
1493 1494 1495
        assert (
            self._tensor_reader is not None
        ), "Data source of DataLoader has not set yet"
S
sneaxiy 已提交
1496

Z
Zeng Jinle 已提交
1497
        self._init_iterable()
S
sneaxiy 已提交
1498
        self._start()
Z
Zeng Jinle 已提交
1499 1500 1501 1502
        return self

    def __next__(self):
        try:
1503
            if self._return_list:
1504 1505 1506 1507
                data = self._reader.read_next_list()
                for i in range(len(data)):
                    data[i] = data[i]._move_to_list()
                return data
1508
            else:
1509
                return self._reader.read_next()
Z
Zeng Jinle 已提交
1510 1511 1512 1513 1514 1515
        except StopIteration:
            self._queue.close()
            self._reset()
            six.reraise(*sys.exc_info())

    def start(self):
1516 1517 1518
        assert (
            not self._iterable
        ), "start() cannot be called when DataLoader is iterable"
1519
        self._start()
Z
Zeng Jinle 已提交
1520 1521

    def reset(self):
1522 1523 1524
        assert (
            not self._iterable
        ), "reset() cannot be called when DataLoader is iterable"
1525
        self._reset()
Z
Zeng Jinle 已提交
1526 1527

    def _start(self):
1528
        def __thread_main__(legacy_expected_place):
Z
Zeng Jinle 已提交
1529
            try:
1530
                # See _DataLoaderIterSingleProcess._thread_loop() for why set expected place here.
L
Leo Chen 已提交
1531
                core.set_current_thread_name("Dataloader_" + str(id(self)))
1532 1533
                _set_expected_place(legacy_expected_place)

1534 1535 1536 1537
                while not self._queue.wait_for_inited(1):
                    if self._exited:
                        return

Z
Zeng Jinle 已提交
1538 1539 1540 1541
                for tensors in self._tensor_reader():
                    array = core.LoDTensorArray()
                    for item in tensors:
                        if not isinstance(item, core.LoDTensor):
1542
                            item = self._check_input_array(item)
Z
Zeng Jinle 已提交
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
                            tmp = core.LoDTensor()
                            tmp.set(item, core.CPUPlace())
                            item = tmp

                        array.append(item)

                    if not self._queue.push(array):
                        break

                self._queue.close()
                self._thread = None
            except Exception as ex:
Z
Zeng Jinle 已提交
1555
                self._queue.kill()
Z
Zeng Jinle 已提交
1556
                self._thread = None
1557
                logging.warning('Your reader has raised an exception!')
Z
Zeng Jinle 已提交
1558 1559
                six.reraise(*sys.exc_info())

1560 1561 1562
        self._thread = threading.Thread(
            target=__thread_main__, args=(_current_expected_place(),)
        )
Z
Zeng Jinle 已提交
1563 1564
        self._thread.daemon = True
        self._thread.start()
S
sneaxiy 已提交
1565

S
sneaxiy 已提交
1566
    def _reset(self):
1567
        self._queue.close()
1568
        self._exited = True
Z
Zeng Jinle 已提交
1569 1570 1571 1572
        thread = self._thread
        if thread is not None:
            thread.join()

1573
        self._exited = False
1574 1575
        self._reader.reset()

1576 1577 1578
    def set_sample_generator(
        self, reader, batch_size, drop_last=True, places=None
    ):
Z
Zeng Jinle 已提交
1579
        assert batch_size > 0, "batch_size must be larger than 0"
1580 1581 1582 1583
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
1584 1585 1586 1587 1588 1589 1590
        has_lod = False
        for f in self._feed_list:
            if f.lod_level != 0:
                has_lod = True
                break

        if has_lod:
1591 1592 1593 1594 1595 1596
            self.set_sample_list_generator(
                paddle.batch(
                    reader, batch_size=batch_size, drop_last=drop_last
                ),
                places=places,
            )
1597
        else:
1598 1599 1600 1601 1602 1603 1604
            reader = BatchedTensorProvider(
                feed_list=self._feed_list,
                place=core.CPUPlace(),
                batch_size=batch_size,
                generator=reader,
                drop_last=drop_last,
            )
1605
            self.set_batch_generator(reader, places=places)
Z
Zeng Jinle 已提交
1606 1607 1608
        return self

    def set_sample_list_generator(self, reader, places=None):
1609 1610 1611 1612
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
1613
        with program_guard(Program(), Program()):
1614 1615 1616
            feeder = DataFeeder(
                feed_list=self._feed_list, place=core.CPUPlace()
            )
1617
            paddle_reader = feeder.decorate_reader(reader, multi_devices=False)
Z
Zeng Jinle 已提交
1618

1619 1620 1621
        def __tensor_reader_impl__():
            for slots in paddle_reader():
                yield [slots[var.name] for var in self._feed_list]
Z
Zeng Jinle 已提交
1622 1623 1624 1625 1626

        self.set_batch_generator(__tensor_reader_impl__, places)
        return self

    def set_batch_generator(self, reader, places=None):
1627 1628 1629 1630
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
Z
Zeng Jinle 已提交
1631 1632
        self._tensor_reader = reader
        if self._iterable:
1633 1634 1635
            assert (
                places is not None
            ), "Places cannot be None when DataLoader is iterable"
Z
Zeng Jinle 已提交
1636 1637 1638 1639
            self._places = _convert_places(places)
        else:
            if places is not None:
                logging.info(
1640 1641
                    'places would be ommited when DataLoader is not iterable'
                )
Z
Zeng Jinle 已提交
1642 1643 1644 1645
        return self


class PyReader(DataLoaderBase):
1646
    r"""
1647
    Create a reader object for data feeding in Python.
Z
Zeng Jinle 已提交
1648
    Data would be prefetched using Python thread and be pushed
1649
    into a queue asynchronously. Data in the queue would be extracted
Z
Zeng Jinle 已提交
1650 1651
    automatically when `Executor.run(...)` is called.

1652
    Args:
Z
Zeng Jinle 已提交
1653 1654 1655
        feed_list (list(Variable)|tuple(Variable)): feed variable list.
            The variables should be created by :code:`fluid.layers.data()`.
        capacity (int): capacity of the queue maintained in PyReader.
1656 1657 1658 1659 1660
            The unit is batch number. Set larger capacity if your reader
            is fast.
        use_double_buffer (bool): whether to use double_buffer_reader.
            If use_double_buffer=True, PyReader would prefetch next
            batch data asynchronously, so it would speed up data feeding
Z
Zeng Jinle 已提交
1661
            and occupies a little more CPU or GPU memory, i.e., the memory
1662 1663 1664 1665 1666 1667 1668
            of one batch input data.
        iterable (bool): whether the created PyReader is iterable.
        return_list (bool): whether the return value on each device is
            presented as a list. It is only valid when iterable=True.
            If return_list=False, the return value on each device would
            be a dict of str -> LoDTensor, where the key of the dict is
            the name of each fed variables. If return_list=True, the
Z
Zeng Jinle 已提交
1669 1670
            return value on each device would be a list(LoDTensor). It is
            recommended to use return_list=False in static graph mode and
1671
            use return_list=True in dygraph mode.
Z
Zeng Jinle 已提交
1672 1673

    Returns:
G
guofei 已提交
1674 1675 1676 1677
        the created reader object.

    Return type:
        reader(Reader)
Z
Zeng Jinle 已提交
1678 1679 1680

    Examples:
        1. If iterable = False, the created PyReader object is almost the
1681 1682
           same as :code:`fluid.layers.py_reader()`. Operators would be
           inserted into the program. User should call :code:`start()`
Z
Zeng Jinle 已提交
1683
           before each epoch and catch :code:`fluid.core.EOFException`
1684 1685
           thrown by :code:`Executor.run()` when epoch ends. Once the
           exception is caught, user should call :code:`reset()` to reset
Z
Zeng Jinle 已提交
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
           the reader manually.

        .. code-block:: python

           import paddle
           import paddle.fluid as fluid
           import numpy as np

           EPOCH_NUM = 3
           ITER_NUM = 5
           BATCH_SIZE = 3
1697

G
guofei 已提交
1698 1699
           def network(image, label):
               # User-defined network, here is an example of softmax regression.
1700
               predict = fluid.layers.fc(input=image, size=10, act='softmax')
G
guofei 已提交
1701
               return fluid.layers.cross_entropy(input=predict, label=label)
Z
Zeng Jinle 已提交
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712

           def reader_creator_random_image_and_label(height, width):
               def reader():
                   for i in range(ITER_NUM):
                       fake_image = np.random.uniform(low=0,
                                                      high=255,
                                                      size=[height, width])
                       fake_label = np.ones([1])
                       yield fake_image, fake_label
               return reader

G
guofei 已提交
1713 1714
           image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
           label = fluid.data(name='label', shape=[None, 1], dtype='int64')
Z
Zeng Jinle 已提交
1715 1716 1717 1718 1719 1720 1721 1722

           reader = fluid.io.PyReader(feed_list=[image, label],
                                      capacity=4,
                                      iterable=False)

           user_defined_reader = reader_creator_random_image_and_label(784, 784)
           reader.decorate_sample_list_generator(
               paddle.batch(user_defined_reader, batch_size=BATCH_SIZE))
G
guofei 已提交
1723 1724
           loss = network(image, label)
           executor = fluid.Executor(fluid.CPUPlace())
Z
Zeng Jinle 已提交
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
           executor.run(fluid.default_startup_program())
           for i in range(EPOCH_NUM):
               reader.start()
               while True:
                   try:
                       executor.run(feed=None)
                   except fluid.core.EOFException:
                       reader.reset()
                       break

1735

Z
Zeng Jinle 已提交
1736
        2. If iterable=True, the created PyReader object is decoupled with
1737 1738 1739 1740
           the program. No operator would be inserted into the program.
           In this case, the created reader is a Python generator, which
           is iterable. User should feed the data yielded from PyReader
           object into :code:`Executor.run(feed=...)`.
Z
Zeng Jinle 已提交
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751

        .. code-block:: python

           import paddle
           import paddle.fluid as fluid
           import numpy as np

           EPOCH_NUM = 3
           ITER_NUM = 5
           BATCH_SIZE = 10

G
guofei 已提交
1752 1753
           def network(image, label):
               # User-defined network, here is an example of softmax regression.
1754
               predict = fluid.layers.fc(input=image, size=10, act='softmax')
G
guofei 已提交
1755 1756
               return fluid.layers.cross_entropy(input=predict, label=label)

Z
Zeng Jinle 已提交
1757 1758 1759
           def reader_creator_random_image(height, width):
               def reader():
                   for i in range(ITER_NUM):
G
guofei 已提交
1760 1761
                       fake_image = np.random.uniform(low=0, high=255, size=[height, width])
                       fake_label = np.ones([1])
1762
                       yield fake_image, fake_label
Z
Zeng Jinle 已提交
1763 1764
               return reader

G
guofei 已提交
1765 1766 1767
           image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
           label = fluid.data(name='label', shape=[None, 1], dtype='int64')
           reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True, return_list=False)
Z
Zeng Jinle 已提交
1768 1769 1770 1771

           user_defined_reader = reader_creator_random_image(784, 784)
           reader.decorate_sample_list_generator(
               paddle.batch(user_defined_reader, batch_size=BATCH_SIZE),
G
guofei 已提交
1772
                   fluid.core.CPUPlace())
1773

G
guofei 已提交
1774 1775 1776
           loss = network(image, label)
           executor = fluid.Executor(fluid.CPUPlace())
           executor.run(fluid.default_startup_program())
1777

Z
Zeng Jinle 已提交
1778 1779
           for _ in range(EPOCH_NUM):
               for data in reader():
G
guofei 已提交
1780
                   executor.run(feed=data, fetch_list=[loss])
Z
Zeng Jinle 已提交
1781 1782


1783
        3. If return_list=True, the return values would be presented as list instead of dict.
Z
Zeng Jinle 已提交
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
           This is usually used in dygraph mode.

        .. code-block:: python

           import paddle
           import paddle.fluid as fluid
           import numpy as np

           ITER_NUM = 5
           BATCH_SIZE = 10

           def reader_creator_random_image(height, width):
               def reader():
                   for i in range(ITER_NUM):
                       yield np.random.uniform(low=0, high=255, size=[height, width]), \
                           np.random.random_integers(low=0, high=9, size=[1])
               return reader

           place = fluid.CPUPlace()
           with fluid.dygraph.guard(place):
               py_reader = fluid.io.PyReader(capacity=2, return_list=True)
               user_defined_reader = reader_creator_random_image(784, 784)
               py_reader.decorate_sample_list_generator(
                   paddle.batch(user_defined_reader, batch_size=BATCH_SIZE),
                   place)
               for image, label in py_reader():
                   relu = fluid.layers.relu(image)
    """

1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
    def __init__(
        self,
        feed_list=None,
        capacity=None,
        use_double_buffer=True,
        iterable=True,
        return_list=False,
    ):
        self._loader = DataLoader.from_generator(
            feed_list, capacity, use_double_buffer, iterable, return_list
        )
Z
Zeng Jinle 已提交
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837

    @property
    def queue(self):
        return self._loader.queue

    @property
    def iterable(self):
        return self._loader.iterable

    def __iter__(self):
        return self._loader.__iter__()

    def __next__(self):
        return self._loader.__next__()
S
sneaxiy 已提交
1838 1839

    def start(self):
S
add doc  
sneaxiy 已提交
1840
        '''
1841 1842 1843
        Start the data feeding thread.
        Can only call when the reader object is not iterable.

1844 1845
        Example:
            .. code-block:: python
1846

H
Huihuang Zheng 已提交
1847 1848 1849 1850
                import paddle
                import paddle.fluid as fluid
                import numpy as np

1851 1852 1853 1854 1855 1856
                BATCH_SIZE = 10

                def generator():
                    for i in range(5):
                        yield np.random.uniform(low=0, high=255, size=[784, 784]),

G
guofei 已提交
1857
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
1858 1859 1860 1861
                reader = fluid.io.PyReader(feed_list=[image], capacity=4, iterable=False)
                reader.decorate_sample_list_generator(
                    paddle.batch(generator, batch_size=BATCH_SIZE))

G
guofei 已提交
1862
                executor = fluid.Executor(fluid.CPUPlace())
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
                executor.run(fluid.default_startup_program())
                for i in range(3):
                    reader.start()
                    while True:
                        try:
                            executor.run(feed=None)
                        except fluid.core.EOFException:
                            reader.reset()
                            break

1873
        '''
Z
Zeng Jinle 已提交
1874
        self._loader.start()
S
sneaxiy 已提交
1875

S
sneaxiy 已提交
1876
    def reset(self):
S
add doc  
sneaxiy 已提交
1877
        '''
1878
        Reset the reader object when :code:`fluid.core.EOFException` raises.
S
add doc  
sneaxiy 已提交
1879
        Can only call when the reader object is not iterable.
1880

1881 1882 1883
        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1884 1885 1886 1887
                import paddle
                import paddle.fluid as fluid
                import numpy as np

1888 1889 1890 1891 1892 1893
                BATCH_SIZE = 10

                def generator():
                    for i in range(5):
                        yield np.random.uniform(low=0, high=255, size=[784, 784]),

G
guofei 已提交
1894
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
1895 1896 1897 1898
                reader = fluid.io.PyReader(feed_list=[image], capacity=4, iterable=False)
                reader.decorate_sample_list_generator(
                    paddle.batch(generator, batch_size=BATCH_SIZE))

G
guofei 已提交
1899
                executor = fluid.Executor(fluid.CPUPlace())
1900 1901 1902 1903 1904 1905 1906 1907
                executor.run(fluid.default_startup_program())
                for i in range(3):
                    reader.start()
                    while True:
                        try:
                            executor.run(feed=None)
                        except fluid.core.EOFException:
                            reader.reset()
1908
                            break
1909

S
add doc  
sneaxiy 已提交
1910
        '''
Z
Zeng Jinle 已提交
1911
        self._loader.reset()
S
sneaxiy 已提交
1912

1913 1914 1915
    def decorate_sample_generator(
        self, sample_generator, batch_size, drop_last=True, places=None
    ):
S
sneaxiy 已提交
1916 1917
        '''
        Set the data source of the PyReader object.
1918

S
sneaxiy 已提交
1919
        The provided :code:`sample_generator` should be a Python generator,
1920
        which yields list(numpy.ndarray)-typed data of each sample.
S
sneaxiy 已提交
1921 1922 1923

        :code:`places` must be set when the PyReader object is iterable.

1924
        If all inputs have no lods, this method is faster than
S
sneaxiy 已提交
1925
        :code:`decorate_sample_list_generator(paddle.batch(sample_generator, ...))` .
S
sneaxiy 已提交
1926 1927 1928

        Args:
            sample_generator (generator): Python generator that yields
1929
                list(numpy.ndarray)-typed sample data.
S
sneaxiy 已提交
1930 1931
            batch_size (int): batch size. Must be larger than 0.
            drop_last (bool): Whether to drop the last batch when sample number
1932
                is less than batch_size.
S
sneaxiy 已提交
1933 1934
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
                be provided when PyReader is iterable.
1935 1936 1937 1938

        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1939 1940 1941
                import paddle.fluid as fluid
                import numpy as np

1942 1943 1944
                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3
1945

G
guofei 已提交
1946 1947
                def network(image, label):
                    # User-defined network, here is an example of softmax regression.
1948
                    predict = fluid.layers.fc(input=image, size=10, act='softmax')
G
guofei 已提交
1949
                    return fluid.layers.cross_entropy(input=predict, label=label)
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960

                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            fake_image = np.random.uniform(low=0,
                                                           high=255,
                                                           size=[height, width])
                            fake_label = np.array([1])
                            yield fake_image, fake_label
                    return generator

G
guofei 已提交
1961 1962
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1963 1964 1965 1966 1967
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
                reader.decorate_sample_generator(user_defined_generator,
                                                 batch_size=BATCH_SIZE,
G
guofei 已提交
1968 1969 1970 1971
                                                 places=[fluid.CPUPlace()])
                loss = network(image, label)
                executor = fluid.Executor(fluid.CPUPlace())
                executor.run(fluid.default_startup_program())
1972 1973 1974

                for _ in range(EPOCH_NUM):
                    for data in reader():
G
guofei 已提交
1975
                        executor.run(feed=data, fetch_list=[loss])
1976

S
sneaxiy 已提交
1977
        '''
1978 1979 1980
        self._loader.set_sample_generator(
            sample_generator, batch_size, drop_last, places
        )
S
sneaxiy 已提交
1981

S
sneaxiy 已提交
1982
    def decorate_sample_list_generator(self, reader, places=None):
S
add doc  
sneaxiy 已提交
1983
        '''
1984
        Set the data source of the PyReader object.
S
add doc  
sneaxiy 已提交
1985 1986

        The provided :code:`reader` should be a Python generator,
1987 1988
        which yields list(numpy.ndarray) typed batched data.

S
add doc  
sneaxiy 已提交
1989 1990 1991
        :code:`places` must be set when the PyReader object is iterable.

        Args:
1992 1993
            reader (generator): Python generator that yields
                list(numpy.ndarray)-typed batched data.
S
sneaxiy 已提交
1994 1995
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
                be provided when PyReader is iterable.
1996

1997 1998 1999
        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
2000 2001 2002 2003
                import paddle
                import paddle.fluid as fluid
                import numpy as np

2004 2005 2006 2007
                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3

G
guofei 已提交
2008 2009
                def network(image, label):
                    # User-defined network, here is an example of softmax regression.
2010
                    predict = fluid.layers.fc(input=image, size=10, act='softmax')
G
guofei 已提交
2011 2012
                    return fluid.layers.cross_entropy(input=predict, label=label)

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            fake_image = np.random.uniform(low=0,
                                                           high=255,
                                                           size=[height, width])
                            fake_label = np.ones([1])
                            yield fake_image, fake_label
                    return generator

G
guofei 已提交
2023 2024
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
2025 2026 2027 2028 2029
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
                reader.decorate_sample_list_generator(
                    paddle.batch(user_defined_generator, batch_size=BATCH_SIZE),
G
guofei 已提交
2030
                    fluid.core.CPUPlace())
2031

G
guofei 已提交
2032 2033 2034
                loss = network(image, label)
                executor = fluid.Executor(fluid.core.CPUPlace())
                executor.run(fluid.default_startup_program())
2035 2036 2037

                for _ in range(EPOCH_NUM):
                    for data in reader():
G
guofei 已提交
2038
                        executor.run(feed=data, fetch_list=[loss])
2039

S
add doc  
sneaxiy 已提交
2040
        '''
Z
Zeng Jinle 已提交
2041
        self._loader.set_sample_list_generator(reader, places)
S
sneaxiy 已提交
2042

S
sneaxiy 已提交
2043
    def decorate_batch_generator(self, reader, places=None):
S
add doc  
sneaxiy 已提交
2044 2045 2046 2047
        '''
        Set the data source of the PyReader object.

        The provided :code:`reader` should be a Python generator,
S
sneaxiy 已提交
2048
        which yields numpy.ndarray-typed or LoDTensor-typed batched data.
S
add doc  
sneaxiy 已提交
2049 2050 2051 2052 2053 2054

        :code:`places` must be set when the PyReader object is iterable.

        Args:
            reader (generator): Python generator that yields LoDTensor-typed
                batched data.
S
sneaxiy 已提交
2055
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
S
sneaxiy 已提交
2056
                be provided when PyReader is iterable.
2057 2058 2059 2060

        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
2061 2062 2063
                import paddle.fluid as fluid
                import numpy as np

2064 2065 2066
                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3
2067

G
guofei 已提交
2068 2069
                def network(image, label):
                    # User-defined network, here is an example of softmax regression.
2070
                    predict = fluid.layers.fc(input=image, size=10, act='softmax')
G
guofei 已提交
2071
                    return fluid.layers.cross_entropy(input=predict, label=label)
2072 2073 2074 2075 2076 2077 2078 2079

                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            batch_image = np.random.uniform(low=0,
                                                            high=255,
                                                            size=[BATCH_SIZE, height, width])
                            batch_label = np.ones([BATCH_SIZE, 1])
G
guofei 已提交
2080 2081
                            batch_image = batch_image.astype('float32')
                            batch_label = batch_label.astype('int64')
2082 2083 2084
                            yield batch_image, batch_label
                    return generator

G
guofei 已提交
2085 2086
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
2087 2088 2089
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
G
guofei 已提交
2090
                reader.decorate_batch_generator(user_defined_generator, fluid.CPUPlace())
2091

G
guofei 已提交
2092 2093 2094
                loss = network(image, label)
                executor = fluid.Executor(fluid.CPUPlace())
                executor.run(fluid.default_startup_program())
2095 2096 2097

                for _ in range(EPOCH_NUM):
                    for data in reader():
G
guofei 已提交
2098
                        executor.run(feed=data, fetch_list=[loss])
2099

S
add doc  
sneaxiy 已提交
2100
        '''
Z
Zeng Jinle 已提交
2101 2102 2103 2104 2105
        self._loader.set_batch_generator(reader, places)


class DatasetLoader(DataLoaderBase):
    def __init__(self, dataset, places, drop_last):
2106 2107 2108 2109 2110
        assert isinstance(
            dataset, paddle.distributed.fleet.dataset.DatasetBase
        ), "dataset must be type of DatasetBase"
        assert (
            not _non_static_mode()
Z
Zeng Jinle 已提交
2111
        ), "DatasetLoader is not supported in dygraph mode yet"
2112 2113 2114 2115
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
Z
Zeng Jinle 已提交
2116 2117 2118

        thread_num = len(places)

2119 2120 2121 2122 2123
        assert (
            len(dataset.filelist) >= thread_num
        ), "Filelist number of dataset {} must be not less than place number {}".format(
            len(dataset.filelist), thread_num
        )
Z
Zeng Jinle 已提交
2124 2125

        if dataset.thread_num != 0 and dataset.thread_num != thread_num:
2126 2127
            logging.warn(
                'thread_num {} which is set in Dataset is ignored'.format(
2128 2129 2130
                    dataset.thread_num
                )
            )
Z
Zeng Jinle 已提交
2131

2132
        dataset._set_thread(thread_num)
Z
Zeng Jinle 已提交
2133

2134 2135 2136 2137 2138 2139
        if (
            isinstance(
                dataset, paddle.distributed.fleet.dataset.InMemoryDataset
            )
            and dataset.queue_num > thread_num
        ):
2140 2141
            logging.warn(
                "queue_num {} which is set in Dataset is ignored".format(
2142 2143 2144
                    dataset.queue_num
                )
            )
2145
            dataset._set_queue_num(thread_num)
Z
Zeng Jinle 已提交
2146 2147 2148

        self._dataset = dataset
        use_slots = [
2149 2150
            slot.name
            for slot in dataset.proto_desc.multi_slot_desc.slots
Z
Zeng Jinle 已提交
2151 2152 2153 2154
            if slot.is_used
        ]

        self._iterable_dataset = core.IterableDatasetWrapper(
2155 2156 2157 2158 2159 2160
            dataset.dataset,
            use_slots,
            _convert_places(places),
            dataset.proto_desc.batch_size,
            drop_last,
        )
Z
Zeng Jinle 已提交
2161 2162 2163 2164 2165 2166 2167 2168 2169

    def __iter__(self):
        self._dataset._finish_to_run()
        self._dataset._prepare_to_run()
        self._iterable_dataset._start()
        return self

    def __next__(self):
        return self._iterable_dataset._next()