nets.py 25.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15
from . import layers
16
from .data_feeder import check_variable_and_dtype, convert_dtype
F
Feiyu Chan 已提交
17
from ..utils import deprecated
F
fengjiayi 已提交
18

19 20 21
__all__ = [
    "simple_img_conv_pool",
    "sequence_conv_pool",
22
    "glu",
23
    "scaled_dot_product_attention",
Q
qiaolongfei 已提交
24
    "img_conv_group",
25
]
D
dzhwinter 已提交
26

F
fengjiayi 已提交
27

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
def simple_img_conv_pool(
    input,
    num_filters,
    filter_size,
    pool_size,
    pool_stride,
    pool_padding=0,
    pool_type='max',
    global_pooling=False,
    conv_stride=1,
    conv_padding=0,
    conv_dilation=1,
    conv_groups=1,
    param_attr=None,
    bias_attr=None,
    act=None,
    use_cudnn=True,
):
46
    r"""
47
        :api_attr: Static Graph
S
swtkiwi 已提交
48

S
SunGaofeng 已提交
49
    The simple_img_conv_pool api is composed of :ref:`api_fluid_layers_conv2d` and :ref:`api_fluid_layers_pool2d` .
C
chengduoZH 已提交
50 51

    Args:
S
SunGaofeng 已提交
52 53
        input (Variable): 4-D Tensor, shape is [N, C, H, W], data type can be float32 or float64.
        num_filters(int): The number of filters. It is the same as the output channels.
C
chengduoZH 已提交
54 55 56
        filter_size (int|list|tuple): The filter size. If filter_size is a list or
            tuple, it must contain two integers, (filter_size_H, filter_size_W). Otherwise,
            the filter_size_H = filter_size_W = filter_size.
S
SunGaofeng 已提交
57
        pool_size (int|list|tuple): The pooling size of pool2d layer. If pool_size
C
chengduoZH 已提交
58 59
            is a list or tuple, it must contain two integers, (pool_size_H, pool_size_W).
            Otherwise, the pool_size_H = pool_size_W = pool_size.
S
SunGaofeng 已提交
60
        pool_stride (int|list|tuple): The pooling stride of pool2d layer. If pool_stride
C
chengduoZH 已提交
61 62
            is a list or tuple, it must contain two integers, (pooling_stride_H, pooling_stride_W).
            Otherwise, the pooling_stride_H = pooling_stride_W = pool_stride.
S
SunGaofeng 已提交
63
        pool_padding (int|list|tuple): The padding of pool2d layer. If pool_padding is a list or
C
chengduoZH 已提交
64 65
            tuple, it must contain two integers, (pool_padding_H, pool_padding_W).
            Otherwise, the pool_padding_H = pool_padding_W = pool_padding. Default 0.
S
SunGaofeng 已提交
66
        pool_type (str): Pooling type can be :math:`max` for max-pooling or :math:`avg` for
C
chengduoZH 已提交
67 68 69
            average-pooling. Default :math:`max`.
        global_pooling (bool): Whether to use the global pooling. If global_pooling = true,
            pool_size and pool_padding while be ignored. Default False
C
chengduo 已提交
70
        conv_stride (int|list|tuple): The stride size of the conv2d Layer. If stride is a
C
chengduoZH 已提交
71 72
            list or tuple, it must contain two integers, (conv_stride_H, conv_stride_W). Otherwise,
            the conv_stride_H = conv_stride_W = conv_stride. Default: conv_stride = 1.
C
chengduo 已提交
73
        conv_padding (int|list|tuple): The padding size of the conv2d Layer. If padding is
C
chengduoZH 已提交
74 75
            a list or  tuple, it must contain two integers, (conv_padding_H, conv_padding_W).
            Otherwise, the conv_padding_H = conv_padding_W = conv_padding. Default: conv_padding = 0.
C
chengduo 已提交
76
        conv_dilation (int|list|tuple): The dilation size of the conv2d Layer. If dilation is
C
chengduoZH 已提交
77 78
            a list or tuple, it must contain two integers, (conv_dilation_H, conv_dilation_W).
            Otherwise, the conv_dilation_H = conv_dilation_W = conv_dilation. Default: conv_dilation = 1.
C
chengduo 已提交
79
        conv_groups (int): The groups number of the conv2d Layer. According to grouped
C
chengduoZH 已提交
80 81 82
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`.
            Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        act (str): Activation type for conv2d, if it is set to None, activation is not
            appended. Default: None.
C
chengduoZH 已提交
97 98 99 100
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True

    Return:
S
SunGaofeng 已提交
101 102 103 104
        4-D Tensor, the result of input after conv2d and pool2d, with the same data type as :attr:`input`

    Return Type:
        Variable
C
chengduoZH 已提交
105 106 107 108

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
109
            import paddle.fluid as fluid
C
cnn 已提交
110 111
            import paddle
            paddle.enable_static()
S
SunGaofeng 已提交
112
            img = fluid.data(name='img', shape=[100, 1, 28, 28], dtype='float32')
C
chengduoZH 已提交
113 114 115 116 117 118 119
            conv_pool = fluid.nets.simple_img_conv_pool(input=img,
                                                        filter_size=5,
                                                        num_filters=20,
                                                        pool_size=2,
                                                        pool_stride=2,
                                                        act="relu")
    """
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
    conv_out = layers.conv2d(
        input=input,
        num_filters=num_filters,
        filter_size=filter_size,
        stride=conv_stride,
        padding=conv_padding,
        dilation=conv_dilation,
        groups=conv_groups,
        param_attr=param_attr,
        bias_attr=bias_attr,
        act=act,
        use_cudnn=use_cudnn,
    )

    pool_out = layers.pool2d(
        input=conv_out,
        pool_size=pool_size,
        pool_type=pool_type,
        pool_stride=pool_stride,
        pool_padding=pool_padding,
        global_pooling=global_pooling,
        use_cudnn=use_cudnn,
    )
Q
Qiao Longfei 已提交
143 144 145
    return pool_out


146 147 148 149 150 151 152 153 154 155 156 157 158 159
def img_conv_group(
    input,
    conv_num_filter,
    pool_size,
    conv_padding=1,
    conv_filter_size=3,
    conv_act=None,
    param_attr=None,
    conv_with_batchnorm=False,
    conv_batchnorm_drop_rate=0.0,
    pool_stride=1,
    pool_type="max",
    use_cudnn=True,
):
Q
Qiao Longfei 已提交
160
    """
161
        :api_attr: Static Graph
S
swtkiwi 已提交
162

C
chengduoZH 已提交
163
    The Image Convolution Group is composed of Convolution2d, BatchNorm, DropOut,
C
cnn 已提交
164
    and Pool2D. According to the input arguments, img_conv_group will do serials of
C
chengduoZH 已提交
165
    computation for Input using Convolution2d, BatchNorm, DropOut, and pass the last
C
cnn 已提交
166
    result to Pool2D.
C
chengduoZH 已提交
167 168

    Args:
L
lvmengsi 已提交
169
        input (Variable): The input is 4-D Tensor with shape [N, C, H, W], the data type of input is float32 or float64.
C
chengduoZH 已提交
170
        conv_num_filter(list|tuple): Indicates the numbers of filter of this group.
C
cnn 已提交
171
        pool_size (int|list|tuple): The pooling size of Pool2D Layer. If pool_size
L
lvmengsi 已提交
172 173
            is a list or tuple, it must contain two integers, (pool_size_height, pool_size_width).
            Otherwise, the pool_size_height = pool_size_width = pool_size.
C
cnn 已提交
174
        conv_padding (int|list|tuple): The padding size of the Conv2D Layer. If padding is
C
chengduoZH 已提交
175
            a list or tuple, its length must be equal to the length of conv_num_filter.
C
cnn 已提交
176
            Otherwise the conv_padding of all Conv2D Layers are the same. Default 1.
C
chengduoZH 已提交
177 178
        conv_filter_size (int|list|tuple): The filter size. If filter_size is a list or
            tuple, its length must be equal to the length of conv_num_filter.
C
cnn 已提交
179 180
            Otherwise the conv_filter_size of all Conv2D Layers are the same. Default 3.
        conv_act (str): Activation type for Conv2D Layer that is not followed by BatchNorm.
C
chengduoZH 已提交
181
            Default: None.
C
cnn 已提交
182 183
        param_attr (ParamAttr): The parameters to the Conv2D Layer. Default: None
        conv_with_batchnorm (bool|list): Indicates whether to use BatchNorm after Conv2D Layer.
C
chengduoZH 已提交
184 185
            If conv_with_batchnorm is a list, its length must be equal to the length of
            conv_num_filter. Otherwise, conv_with_batchnorm indicates whether all the
C
cnn 已提交
186
            Conv2D Layer follows a BatchNorm. Default False.
C
chengduoZH 已提交
187 188 189 190
        conv_batchnorm_drop_rate (float|list): Indicates the drop_rate of Dropout Layer
            after BatchNorm. If conv_batchnorm_drop_rate is a list, its length must be
            equal to the length of conv_num_filter. Otherwise, drop_rate of all Dropout
            Layers is conv_batchnorm_drop_rate. Default 0.0.
C
cnn 已提交
191
        pool_stride (int|list|tuple): The pooling stride of Pool2D layer. If pool_stride
C
chengduoZH 已提交
192 193 194 195 196 197 198 199 200
            is a list or tuple, it must contain two integers, (pooling_stride_H,
            pooling_stride_W). Otherwise, the pooling_stride_H = pooling_stride_W = pool_stride.
            Default 1.
        pool_type (str): Pooling type can be :math:`max` for max-pooling and :math:`avg` for
            average-pooling. Default :math:`max`.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True

    Return:
201
        A Variable holding Tensor representing the final result after serial computation using Convolution2d,
C
cnn 已提交
202
        BatchNorm, DropOut, and Pool2D, whose data type is the same with input.
C
chengduoZH 已提交
203 204 205 206

    Examples:
        .. code-block:: python

207
            import paddle.fluid as fluid
C
cnn 已提交
208 209
            import paddle
            paddle.enable_static()
210

L
lvmengsi 已提交
211
            img = fluid.data(name='img', shape=[None, 1, 28, 28], dtype='float32')
C
chengduoZH 已提交
212 213 214 215 216 217 218
            conv_pool = fluid.nets.img_conv_group(input=img,
                                                  conv_padding=1,
                                                  conv_num_filter=[3, 3],
                                                  conv_filter_size=3,
                                                  conv_act="relu",
                                                  pool_size=2,
                                                  pool_stride=2)
Q
Qiao Longfei 已提交
219 220
    """
    tmp = input
221 222 223
    assert isinstance(conv_num_filter, list) or isinstance(
        conv_num_filter, tuple
    )
Q
Qiao Longfei 已提交
224 225 226 227 228

    def __extend_list__(obj):
        if not hasattr(obj, '__len__'):
            return [obj] * len(conv_num_filter)
        else:
C
chengduoZH 已提交
229
            assert len(obj) == len(conv_num_filter)
Q
Qiao Longfei 已提交
230 231 232 233
            return obj

    conv_padding = __extend_list__(conv_padding)
    conv_filter_size = __extend_list__(conv_filter_size)
F
fengjiayi 已提交
234
    param_attr = __extend_list__(param_attr)
Q
Qiao Longfei 已提交
235 236 237
    conv_with_batchnorm = __extend_list__(conv_with_batchnorm)
    conv_batchnorm_drop_rate = __extend_list__(conv_batchnorm_drop_rate)

238
    for i in range(len(conv_num_filter)):
Q
Qiao Longfei 已提交
239 240 241 242
        local_conv_act = conv_act
        if conv_with_batchnorm[i]:
            local_conv_act = None

243 244 245 246 247 248 249 250 251
        tmp = layers.conv2d(
            input=tmp,
            num_filters=conv_num_filter[i],
            filter_size=conv_filter_size[i],
            padding=conv_padding[i],
            param_attr=param_attr[i],
            act=local_conv_act,
            use_cudnn=use_cudnn,
        )
Q
Qiao Longfei 已提交
252 253

        if conv_with_batchnorm[i]:
K
Kaipeng Deng 已提交
254
            tmp = layers.batch_norm(input=tmp, act=conv_act)
Q
Qiao Longfei 已提交
255 256
            drop_rate = conv_batchnorm_drop_rate[i]
            if abs(drop_rate) > 1e-5:
257
                tmp = layers.dropout(x=tmp, dropout_prob=drop_rate)
Q
Qiao Longfei 已提交
258

259 260 261 262 263 264 265
    pool_out = layers.pool2d(
        input=tmp,
        pool_size=pool_size,
        pool_type=pool_type,
        pool_stride=pool_stride,
        use_cudnn=use_cudnn,
    )
F
fengjiayi 已提交
266
    return pool_out
D
dzhwinter 已提交
267 268


269 270 271 272 273 274 275 276 277
def sequence_conv_pool(
    input,
    num_filters,
    filter_size,
    param_attr=None,
    act="sigmoid",
    pool_type="max",
    bias_attr=None,
):
C
chengduoZH 已提交
278
    """
279
        :api_attr: Static Graph
S
swtkiwi 已提交
280

281
    **This api takes input as an LoDTensor. If input is a Tensor, please use**
S
SunGaofeng 已提交
282 283
    :ref:`api_fluid_nets_simple_img_conv_pool` **instead**

284
    The sequence_conv_pool is composed of :ref:`api_fluid_layers_sequence_conv`
S
SunGaofeng 已提交
285
    and :ref:`api_fluid_layers_sequence_pool` .
C
chengduoZH 已提交
286 287

    Args:
288 289
        input (Variable): 2-D LoDTensor, the input of sequence_conv,
            which supports variable-time length input sequence.
S
SunGaofeng 已提交
290
            The underlying of input is a matrix with shape
C
chengduoZH 已提交
291
            (T, N), where T is the total time steps in this mini-batch and N is
S
SunGaofeng 已提交
292
            the input_hidden_size. The data type is float32 or float64.
C
chengduoZH 已提交
293 294
        num_filters(int): The number of filter.
        filter_size (int): The filter size.
S
SunGaofeng 已提交
295
        param_attr (ParamAttr): The parameters of the sequence_conv Layer. Default: None.
296
        act (str|None): Activation type for Sequence_conv Layer.
S
SunGaofeng 已提交
297
                        If set to None, no activation will be applied. Default: "sigmoid".
C
chengduoZH 已提交
298 299 300
        pool_type (str): Pooling type can be :math:`max` for max-pooling, :math:`average` for
            average-pooling, :math:`sum` for sum-pooling, :math:`sqrt` for sqrt-pooling.
            Default :math:`max`.
301 302 303 304 305
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
306

S
SunGaofeng 已提交
307
    Returns:
308
        The final result after sequence_conv and sequence_pool.
S
SunGaofeng 已提交
309 310 311 312
        It is a 2-D Tensor, with the same data type as :attr:`input`

    Return Type:
        Variable
C
chengduoZH 已提交
313 314 315 316

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
317
            import paddle.fluid as fluid
C
cnn 已提交
318 319
            import paddle
            paddle.enable_static()
S
SunGaofeng 已提交
320
            input_dim = 100 #len(word_dict)
C
chengduoZH 已提交
321 322
            emb_dim = 128
            hid_dim = 512
S
SunGaofeng 已提交
323
            data = fluid.data(name="words", shape=[None, 1], dtype="int64", lod_level=1)
C
chengduoZH 已提交
324 325 326 327 328 329 330
            emb = fluid.layers.embedding(input=data, size=[input_dim, emb_dim], is_sparse=True)
            seq_conv = fluid.nets.sequence_conv_pool(input=emb,
                                                     num_filters=hid_dim,
                                                     filter_size=3,
                                                     act="tanh",
                                                     pool_type="sqrt")
    """
331 332

    check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'input')
333 334 335 336 337 338 339 340
    conv_out = layers.sequence_conv(
        input=input,
        num_filters=num_filters,
        filter_size=filter_size,
        param_attr=param_attr,
        bias_attr=bias_attr,
        act=act,
    )
D
dzhwinter 已提交
341

342
    pool_out = layers.sequence_pool(input=conv_out, pool_type=pool_type)
D
dzhwinter 已提交
343
    return pool_out
G
guosheng 已提交
344 345


F
Feiyu Chan 已提交
346
@deprecated(since="2.0.0", update_to="paddle.nn.functional.glu")
G
guosheng 已提交
347
def glu(input, dim=-1):
348
    r"""
349
        :api_attr: Static Graph
S
swtkiwi 已提交
350

351 352
    The Gated Linear Units(GLU) composed by :ref:`api_fluid_layers_split` ,
    :ref:`api_fluid_layers_sigmoid`  and :ref:`api_fluid_layers_elementwise_mul` .
Y
Yibing Liu 已提交
353
    Specifically, GLU will plit the input into two equal-sized parts,
C
chengduoZH 已提交
354
    :math:`a` and :math:`b`, along the given dimension and then compute as
G
guosheng 已提交
355
    following:
G
guosheng 已提交
356 357 358 359 360

        .. math::

            {GLU}(a, b)= a \otimes \sigma(b)

Y
ying 已提交
361
    Refer to `Language Modeling with Gated Convolutional Networks
G
guosheng 已提交
362
    <https://arxiv.org/pdf/1612.08083.pdf>`_.
Y
ying 已提交
363

G
guosheng 已提交
364
    Args:
365 366
        input (Variable): The input variable which is a Tensor or LoDTensor.
                          The supported data types include float32, float64
Y
Yibing Liu 已提交
367 368
                          and float16 (only for GPU).
        dim (int, optional): The dimension along which to split. If :math:`dim < 0`, the
C
chengduoZH 已提交
369
            dimension to split along is :math:`rank(input) + dim`. Default -1.
G
guosheng 已提交
370 371

    Returns:
Y
Yibing Liu 已提交
372
        Variable: Variable with half the size and same data type of input.
G
guosheng 已提交
373 374 375 376

    Examples:
        .. code-block:: python

377
            import paddle.fluid as fluid
C
cnn 已提交
378 379
            import paddle
            paddle.enable_static()
380

Y
Yibing Liu 已提交
381
            data = fluid.data(
Y
Yibing Liu 已提交
382 383 384
                name="words", shape=[-1, 6, 3, 9], dtype="float32")
            # shape of output: [-1, 3, 3, 9]
            output = fluid.nets.glu(input=data, dim=1)
G
guosheng 已提交
385
    """
386 387 388
    check_variable_and_dtype(
        input, 'input', ['float16', 'float32', 'float64'], "glu"
    )
G
guosheng 已提交
389
    a, b = layers.split(input, num_or_sections=2, dim=dim)
G
guosheng 已提交
390 391
    act_b = layers.sigmoid(x=b)
    out = layers.elementwise_mul(x=a, y=act_b)
G
guosheng 已提交
392
    return out
393 394


395 396 397
def scaled_dot_product_attention(
    queries, keys, values, num_heads=1, dropout_rate=0.0
):
398
    r"""
C
cnn 已提交
399
	:api_attr: Static Graph
S
swtkiwi 已提交
400

G
Guo Sheng 已提交
401
    This interface Multi-Head Attention using scaled dot product.
402
    Attention mechanism can be seen as mapping a query and a set of key-value
G
Guo Sheng 已提交
403 404 405
    pairs to an output. Multi-Head Attention performs attention using multi-head
    parallel, and the inputs of attention would be transformed by linear projection.
    The formula is as follows:
Y
ying 已提交
406

G
Guo Sheng 已提交
407
    .. math::
408

G
Guo Sheng 已提交
409 410 411
        MultiHead(Q, K, V ) & = Concat(head_1, ..., head_h)

        where \  head_i & = Attention(QW_i^Q , KW_i^K , VW_i^V )
412

G
Guo Sheng 已提交
413
        Attention(Q, K, V) & = softmax (\\frac{QK^\mathrm{T}}{\sqrt{d_k}}) V
414

G
Guo Sheng 已提交
415 416 417 418 419 420
    For more details, please refer to `Attention Is All You Need
    <https://arxiv.org/pdf/1706.03762.pdf>`_ .

    Note that the implementation is adapted to batch, and all matrix multiplication
    in :math:`Attention(Q, K, V)` is batched matrix multiplication. Refer to
    :ref:`api_fluid_layers_matmul` .
421

Y
ying 已提交
422
    Args:
G
Guo Sheng 已提交
423 424 425 426 427 428 429 430 431 432 433 434
        queries (Variable): A 3-D Tensor with shape :math:`[N, L_q, d_k \\times h]` ,
            where :math:`N` stands for batch size, :math:`L_q` for the sequence length
            of query, :math:`d_k \\times h` for the feature size of query, :math:`h` for
            head number. The data type should be float32 or float64.
        keys (Variable): A 3-D Tensor with shape :math:`[N, L_k, d_k \\times h]` ,
            where :math:`N` stands for batch size, :math:`L_k` for the sequence length
            of key, :math:`d_k \\times h` for the feature size of key, :math:`h` for head
            number. The data type should be the same as ``queries`` .
        values (Variable): A 3-D Tensor with shape :math:`[N, L_k, d_v \\times h]` ,
            where :math:`N` stands for batch size, :math:`L_k` for the sequence length
            of key, :math:`d_v \\times h` for the feature size of value, :math:`h` for head
            number. The data type should be the same as ``queries`` .
T
tianshuo78520a 已提交
435
        num_heads (int, optional): Indicate the number of head. If the number
G
Guo Sheng 已提交
436 437 438
            is 1, linear projection would not be performed on inputs. Default: 1.
        dropout_rate (float, optional): The rate to drop the attention weight.
            Default: 0.0, which means no dropout.
439 440

    Returns:
G
Guo Sheng 已提交
441 442 443 444 445
        Variable: A 3-D Tensor with shape :math:`[N, L_q, d_v \\times h]` , \
            where :math:`N` stands for batch size, :math:`L_q` for the sequence \
            length of query, :math:`d_v \\times h` for the feature size of value. \
            It has the same data type with inputs, representing the output of \
            Multi-Head Attention.
446

Y
ying 已提交
447
    Raises:
448
        TypeError: The dtype of inputs keys, values and queries should be the same.
T
tianshuo78520a 已提交
449
        ValueError: Inputs queries, keys and values should all be 3-D tensors.
G
Guo Sheng 已提交
450
        ValueError: The hidden size of queries and keys should be the same.
451
        ValueError: The max sequence length in value batch and in key batch should be the same.
G
Guo Sheng 已提交
452 453
        ValueError: he hidden size of keys must be divisible by the number of attention heads.
        ValueError: he hidden size of values must be divisible by the number of attention heads.
Y
ying 已提交
454

455 456 457
    Examples:
        .. code-block:: python

458
            import paddle.fluid as fluid
C
cnn 已提交
459 460
            import paddle
            paddle.enable_static()
461

G
Guo Sheng 已提交
462 463 464
            queries = fluid.data(name="queries", shape=[3, 5, 9], dtype="float32")
            keys = fluid.data(name="keys", shape=[3, 6, 9], dtype="float32")
            values = fluid.data(name="values", shape=[3, 6, 10], dtype="float32")
C
chengduoZH 已提交
465
            contexts = fluid.nets.scaled_dot_product_attention(queries, keys, values)
Y
ying 已提交
466
            contexts.shape  # [3, 5, 10]
467
    """
468 469 470 471 472 473 474 475 476 477 478 479
    check_variable_and_dtype(
        queries,
        'queries',
        ['float32', 'float64'],
        "scaled_dot_product_attention",
    )
    check_variable_and_dtype(
        keys, 'keys', ['float32', 'float64'], "scaled_dot_product_attention"
    )
    check_variable_and_dtype(
        values, 'values', ['float32', 'float64'], "scaled_dot_product_attention"
    )
480 481 482 483 484

    if not (queries.dtype == keys.dtype == values.dtype):
        raise TypeError(
            "The dtype of keys, values and queries should be the same."
            "But received queries.dtype = %s, "
485 486 487 488 489 490 491
            " keys.dtype = %s, values.dtype) = %s."
            % (
                convert_dtype(queries.dtype),
                convert_dtype(keys.dtype),
                convert_dtype(values.dtype),
            )
        )
492

Y
ying 已提交
493 494
    if not (len(queries.shape) == len(keys.shape) == len(values.shape) == 3):
        raise ValueError(
495 496
            "Inputs queries, keys and values should all be 3-D tensors."
            "But received len(queries.shape) = %d, "
497 498 499
            "len(keys.shape) = %d, len(values.shape) = %d."
            % (len(queries.shape), len(keys.shape), len(values.shape))
        )
Y
ying 已提交
500 501 502

    if queries.shape[-1] != keys.shape[-1]:
        raise ValueError(
503 504
            "The hidden size of queries and keys should be the same."
            "But received queries' hidden size = %d and keys' hidden size = %d."
505 506
            % (queries.shape[-1], keys.shape[-1])
        )
Y
ying 已提交
507 508
    if keys.shape[-2] != values.shape[-2]:
        raise ValueError(
509 510
            "The max sequence length in value batch and in key batch "
            "should be the same. But received max sequence length in value batch "
511 512
            "= %d, in key batch = %d." % (values.shape[-2], keys.shape[-2])
        )
Y
ying 已提交
513
    if keys.shape[-1] % num_heads != 0:
514 515 516 517 518
        raise ValueError(
            "The hidden size of keys (%d) must be divisible "
            "by the number of attention heads (%d)."
            % (keys.shape[-1], num_heads)
        )
Y
ying 已提交
519
    if values.shape[-1] % num_heads != 0:
520 521 522 523 524
        raise ValueError(
            "The hidden size of values (%d) must be divisible "
            "by the number of attention heads (%d)."
            % (values.shape[-1], num_heads)
        )
Y
ying 已提交
525

Y
ying 已提交
526
    def __compute_qkv(queries, keys, values, num_heads):
Y
ying 已提交
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
        """
        Add linear projection to queries, keys, and values.

        Args:
            queries(Tensor): a 3-D input Tensor.
            keys(Tensor): a 3-D input Tensor.
            values(Tensor): a 3-D input Tensor.
            num_heads(int): The number of heads. Linearly project the inputs
                            ONLY when num_heads > 1.

        Returns:
            Tensor: linearly projected output Tensors: queries', keys' and
                    values'. They have the same shapes with queries, keys and
                    values.
        """

Y
ying 已提交
543 544 545 546 547 548 549 550
        if num_heads == 1:
            return queries, keys, values

        q = layers.fc(input=queries, size=queries.shape[-1], num_flatten_dims=2)
        k = layers.fc(input=keys, size=keys.shape[-1], num_flatten_dims=2)
        v = layers.fc(input=values, size=values.shape[-1], num_flatten_dims=2)
        return q, k, v

Y
ying 已提交
551 552
    def __split_heads(x, num_heads):
        """
T
tianshuo78520a 已提交
553
        Reshape the last dimension of input tensor x so that it becomes two
Y
ying 已提交
554 555 556
        dimensions.

        Args:
Y
ying 已提交
557 558
            x(Tensor): a 3-D input Tensor.
            num_heads(int): The number of heads.
Y
ying 已提交
559 560

        Returns:
Y
ying 已提交
561 562
            Tensor: a Tensor with shape [..., n, m/num_heads], where m is size
                    of the last dimension of x.
Y
ying 已提交
563
        """
Y
ying 已提交
564 565
        if num_heads == 1:
            return x
566

Y
ying 已提交
567
        hidden_size = x.shape[-1]
568 569 570
        # reshape the 3-D input: [batch_size, max_sequence_length, hidden_dim]
        # into a 4-D output:
        # [batch_size, max_sequence_length, num_heads, hidden_size_per_head].
571 572 573 574
        reshaped = layers.reshape(
            x=x,
            shape=list(x.shape[:-1]) + [num_heads, hidden_size // num_heads],
        )
575

T
tianshuo78520a 已提交
576
        # permute the dimensions into:
577 578 579 580
        # [batch_size, num_heads, max_sequence_len, hidden_size_per_head]
        return layers.transpose(x=reshaped, perm=[0, 2, 1, 3])

    def __combine_heads(x):
Y
ying 已提交
581
        """
T
tianshuo78520a 已提交
582
        Reshape the last two dimensions of input tensor x so that it becomes
Y
ying 已提交
583 584 585 586 587 588 589 590 591 592 593
        one dimension.

        Args:
            x(Tensor): a 4-D input Tensor with shape
                       [bs, num_heads, max_sequence_length, hidden_dim].

        Returns:
            Tensor: a Tensor with shape
                    [bs, max_sequence_length, num_heads * hidden_dim].
        """

594 595
        if len(x.shape) == 3:
            return x
596 597 598
        if len(x.shape) != 4:
            raise ValueError("Input(x) should be a 4-D Tensor.")

Y
ying 已提交
599
        trans_x = layers.transpose(x, perm=[0, 2, 1, 3])
600 601 602 603 604 605 606 607 608 609 610 611 612
        return layers.reshape(
            x=trans_x,
            shape=list(
                map(
                    int,
                    [
                        trans_x.shape[0],
                        trans_x.shape[1],
                        trans_x.shape[2] * trans_x.shape[3],
                    ],
                )
            ),
        )
613

Y
ying 已提交
614 615 616 617 618
    q, k, v = __compute_qkv(queries, keys, values, num_heads)

    q = __split_heads(q, num_heads)
    k = __split_heads(k, num_heads)
    v = __split_heads(v, num_heads)
Y
ying 已提交
619 620

    key_dim_per_head = keys.shape[-1] // num_heads
621
    scaled_q = layers.scale(x=q, scale=key_dim_per_head**-0.5)
622
    product = layers.matmul(x=scaled_q, y=k, transpose_y=True)
Y
ying 已提交
623

624 625 626 627 628 629
    weights = layers.reshape(
        x=layers.reshape(
            x=product, shape=[-1, product.shape[-1]], act="softmax"
        ),
        shape=product.shape,
    )
Y
ying 已提交
630
    if dropout_rate:
631 632 633
        weights = layers.dropout(
            weights, dropout_prob=dropout_rate, is_test=False
        )
Y
ying 已提交
634 635
    ctx_multiheads = layers.matmul(weights, v)
    return __combine_heads(ctx_multiheads)