dataloader_iter.py 33.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import six
import sys
import time
import signal
20
import numbers
21 22 23 24 25
import logging
import itertools
import threading
import numpy as np
import multiprocessing
26
from collections import namedtuple
27 28 29 30 31
from paddle.fluid.framework import (
    _set_expected_place,
    _current_expected_place,
    set_flags,
)
32 33

# NOTE: queue has a different name in python2 and python3
T
tianshuo78520a 已提交
34
import queue
35

36
import paddle
C
chenjian 已提交
37
import paddle.profiler as profiler
38
from paddle.profiler.utils import in_profiler_mode
39
from .. import core, layers
J
Jiabin Yang 已提交
40
from ..framework import _non_static_mode, in_dygraph_mode, _in_legacy_dygraph
41 42 43 44 45
from ..multiprocess_utils import (
    _set_SIGCHLD_handler,
    MP_STATUS_CHECK_INTERVAL,
    CleanupFuncRegistrar,
)
46
from .fetcher import _IterableDatasetFetcher, _MapDatasetFetcher
47
from .batch_sampler import _InfiniteIterableSampler
48
from .collate import default_collate_fn, default_convert_fn
49 50 51 52 53 54 55 56 57
from .worker import (
    ParentWatchDog,
    get_worker_info,
    _worker_loop,
    _DatasetKind,
    _IterableDatasetStopIteration,
    _WorkerException,
    _ResumeIteration,
)
58
from .flat import _flatten_batch, _restore_batch
Z
Zhang Ting 已提交
59
from paddle.profiler.timer import benchmark
60 61

__all__ = ['get_worker_info']
62

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
# NOTE: fix `terminate called without an active exception`
# if for loop break and program exit immediately(with no model
# layers processing) after iterate **the first few data** in
# distributed lauch mode, distributed launch will call
# terminate() to kill main process on each devices, but thread
# is still iterating to fullfill blocking queue caches, which
# may cause thread error `terminate called without an active
# exception` for terminate is a strong singal and `__del__`
# of DataLoader may not be called, so we add a global link to
# the last DataLoader instance to call `__del__` to clean up
# resources
# NOTE: cannot simply as `__del__` to CleanupFuncRegistrar,
# for this will remain a link to each DataLoader instance in
# global, and will precludes GC to auto collect DataLoader
# instance and will cause memory leak
_loader = None


def _clear_loader():
    global _loader
    if _loader is not None:
        try:
            _loader.__del__()
            del _loader
        except:
            pass


CleanupFuncRegistrar.register(_clear_loader)

93

94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
class _DataLoaderIterBase(object):
    """
    Iterator implement of DataLoader, will load and feed mini-batch
    data by setting in given dataloader.

    Args:
        loader(instance of DataLoader): instance of `fluid.io.DataLoader`
    """

    def __init__(self, loader):
        self._dataset = loader.dataset
        self._feed_list = loader.feed_list or []
        self._places = loader.places
        self._return_list = loader.return_list
        self._batch_sampler = loader.batch_sampler
109
        self._drop_last = loader.drop_last
110
        self._auto_collate_batch = loader.auto_collate_batch
111 112
        self._num_workers = loader.num_workers
        self._use_buffer_reader = loader.use_buffer_reader
113
        self._prefetch_factor = loader.prefetch_factor
114
        self._use_shared_memory = loader.use_shared_memory
115 116 117
        self._timeout = (
            loader.timeout if loader.timeout > 0 else MP_STATUS_CHECK_INTERVAL
        )
118
        self._worker_init_fn = loader.worker_init_fn
119
        self._dataset_kind = loader.dataset_kind
120
        self._pin_memory = loader.pin_memory
121

K
Kaipeng Deng 已提交
122
        self._sampler_iter = iter(self._index_sampler)
123 124 125
        if self._auto_collate_batch:
            self._collate_fn = loader.collate_fn or default_collate_fn
        else:
126
            self._collate_fn = loader.collate_fn or default_convert_fn
127

128 129 130 131 132 133 134 135 136
        # LoDTensorBlockingQueue instance for create_py_reader and a thread
        # to put mini-batch data to self._blocking_queue, mini-batch data
        # will be get from:
        # 1. multi-process mode: get data from workers' result queue
        # 2. single-process mode: read mini-batch data in main process
        self._blocking_queue = None
        self._thread = None
        self._thread_done_event = threading.Event()

K
Kaipeng Deng 已提交
137 138 139 140 141 142 143 144 145 146
    @property
    def _index_sampler(self):
        if self._auto_collate_batch:
            return self._batch_sampler
        else:
            if self._dataset_kind == _DatasetKind.MAP:
                return list(range(len(self._dataset)))
            else:
                return _InfiniteIterableSampler(self._dataset, 1)

147 148 149 150 151 152
    def __iter__(self):
        return self

    def __len__(self):
        return len(self._batch_sampler)

153 154 155 156 157 158 159 160 161 162
    def _exit_thread_expectedly(self):
        self._thread_done_event.set()
        if self._blocking_queue:
            self._blocking_queue.close()

    def _exit_thread_unexpectedly(self):
        self._thread_done_event.set()
        if self._blocking_queue:
            self._blocking_queue.kill()

163 164 165 166 167 168 169 170 171 172

class _DataLoaderIterSingleProcess(_DataLoaderIterBase):
    """
    Single process implement of DataLoaderIter, loading data from
    loader.data in main process
    """

    def __init__(self, loader):
        super(_DataLoaderIterSingleProcess, self).__init__(loader)

173
        self._dataset_fetcher = _DatasetKind.create_fetcher(
174 175 176 177 178 179
            self._dataset_kind,
            self._dataset,
            self._auto_collate_batch,
            self._collate_fn,
            self._drop_last,
        )
180

181 182 183 184 185 186 187 188
        # NOTE: _structrue_infos used to record the data structure of
        # batch to restore batch structure after reading Tensor
        # from blocking_queue in single-process mode. Note that
        # only single process is used in single-process mode, we
        # can record the data structure sequencely in a list without
        # recording the send and recv index
        self._structure_infos = []

189
        # NOTE: len(self._places) batch data compose as an output
190
        # iteration, set blocking_queue can cache "self._prefetch_factor" iteration datas
191
        # at most here
192
        self._blocking_queue_capacity = self._prefetch_factor * len(
193 194
            self._places
        )
195 196

        self._init_thread()
197 198 199 200
        self._shutdown = False

        global _loader
        _loader = self
201 202 203 204 205 206 207 208

    def _init_thread(self):
        self._var_names = [v.name for v in self._feed_list]
        self._shapes = [v.shape for v in self._feed_list]
        self._dtypes = [v.dtype for v in self._feed_list]
        self._need_check_feed = [
            v.desc.need_check_feed() for v in self._feed_list
        ]
209
        # if only 1 place, do not need to keep order
210
        self._blocking_queue = core.init_lod_tensor_blocking_queue(
211 212 213 214
            core.Variable(),
            self._blocking_queue_capacity,
            len(self._places) > 1,
        )
215
        self._reader = core.create_py_reader(
216 217 218 219 220 221 222 223 224 225 226 227 228 229
            self._blocking_queue,
            self._var_names,
            self._shapes,
            self._dtypes,
            self._need_check_feed,
            self._places,
            self._use_buffer_reader,
            True,
            self._pin_memory,
        )

        self._thread = threading.Thread(
            target=self._thread_loop, args=(_current_expected_place(),)
        )
230 231 232
        self._thread.daemon = True
        self._thread.start()

233
    def _thread_loop(self, legacy_expected_place):
234
        # NOTE(zhiqiu): Set the expected place for new thread as the same as father thread,
235 236
        # and it will call platform::SetDeviceId() in c++ internally.
        # If we do not set cudaDeviceId in new thread, the default cudaDeviceId will be 0,
237
        # Which may cost hundreds of MB of GPU memory on CUDAPlace(0) if calling some cuda
238
        # APIs in this thread.
L
Leo Chen 已提交
239
        core.set_current_thread_name("Dataloader_" + str(id(self)))
240 241 242 243 244 245 246 247
        _set_expected_place(legacy_expected_place)

        while not self._thread_done_event.is_set():
            try:
                indices = next(self._sampler_iter)

                # read data from dataset in mini-batch
                # with paddle.fluid.dygraph.guard(place=paddle.CPUPlace()):
248
                # read data from dataset in mini-batch
249 250 251
                batch = self._dataset_fetcher.fetch(
                    indices, self._thread_done_event
                )
252 253 254 255
            except StopIteration:
                self._exit_thread_expectedly()
                return

256 257
            if batch is None or self._thread_done_event.is_set():
                break
258 259 260 261

            # flat batch and record structure infos
            batch, structure = _flatten_batch(batch)
            self._structure_infos.append(structure)
262

263 264
            if self._thread_done_event.is_set():
                break
265

266
            try:
267 268 269
                # pack as LoDTensorArray
                array = core.LoDTensorArray()
                for slot in batch:
W
wanghuancoder 已提交
270
                    if isinstance(slot, (paddle.Tensor, core.eager.Tensor)):
K
Kaipeng Deng 已提交
271 272
                        slot = slot.value().get_tensor()
                    elif not isinstance(slot, core.LoDTensor):
273 274 275 276 277 278
                        tmp = core.LoDTensor()
                        tmp.set(slot, core.CPUPlace())
                        slot = tmp

                    array.append(slot)

279 280
                if self._thread_done_event.is_set():
                    break
281

282 283 284 285
                try:
                    self._blocking_queue.push(array)
                except:
                    self._exit_thread_expectedly()
286

287 288 289 290 291
            except:
                self._exit_thread_unexpectedly()
                six.reraise(*sys.exc_info())

        self._exit_thread_expectedly()
292 293

    def __next__(self):
294 295 296
        if in_profiler_mode():
            trace_event = profiler.RecordEvent(
                name="_DataLoaderIterSingleProcess",
297 298
                event_type=profiler.TracerEventType.Dataloader,
            )
299
            trace_event.begin()
300
        try:
Z
Zhang Ting 已提交
301 302
            benchmark().check_if_need_record(self)
            benchmark().before_reader()
303
            if in_dygraph_mode():
J
Jiabin Yang 已提交
304
                data = core.eager.read_next_tensor_list(
305 306
                    self._reader.read_next_list()[0]
                )
307
                data = _restore_batch(data, self._structure_infos.pop(0))
308
            else:
J
Jiabin Yang 已提交
309 310 311 312 313 314 315 316
                if _in_legacy_dygraph():
                    data = self._reader.read_next_var_list()
                    data = _restore_batch(data, self._structure_infos.pop(0))
                else:  # in static mode
                    if self._return_list:
                        data = self._reader.read_next_list()
                        for i in range(len(data)):
                            data[i] = data[i]._move_to_list()
317 318 319
                        structs = [
                            self._structure_infos.pop(0)
                            for _ in range(len(self._places))
J
Jiabin Yang 已提交
320
                        ]
321 322 323
                        data = [
                            _restore_batch(d, s) for d, s in zip(data, structs)
                        ]
J
Jiabin Yang 已提交
324 325 326 327 328 329 330
                        # static graph organized data on multi-device with list, if
                        # place number is 1, there is only 1 device, extra the data
                        # from list for devices to be compatible with dygraph mode
                        if len(self._places) == 1:
                            data = data[0]
                    else:
                        data = self._reader.read_next()
Z
Zhang Ting 已提交
331
            benchmark().after_reader()
332 333

            return data
334
        except StopIteration:
335
            self._reader.shutdown()
336
            self._try_shutdown_all()
337
            six.reraise(*sys.exc_info())
C
chenjian 已提交
338
        finally:
339 340
            if in_profiler_mode():
                trace_event.end()
341

342 343 344
    def _shutdown_thread(self):
        if self._thread:
            self._thread_done_event.set()
345 346 347 348 349 350 351 352 353 354 355
            # NOTE: we wait for _thread exit for 3 seconds, if
            #       thread not exit normally, force kill it
            for _ in range(3):
                if self._thread.is_alive():
                    time.sleep(1)
                else:
                    break
            else:
                if self._thread is not threading.current_thread():
                    self._thread.join()

356
            self._thread = None
357

358 359 360 361
    # python2 compatibility
    def next(self):
        return self.__next__()

362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
    def _try_shutdown_all(self):
        if not self._shutdown:
            try:
                # # _blocking_queue in keep order mode holds sub-threads
                # # need to release thread resources on unexpected exit
                if self._blocking_queue:
                    self._blocking_queue.close()
                    self._blocking_queue = None
                # NOTE: blocking queue should be closed firstly for
                # blocking queue read may hang and _thread_done_event
                # cannot be checked
                self._shutdown_thread()
            finally:
                self._shutdown = True

377
    def __del__(self):
378
        self._try_shutdown_all()
379

380 381 382 383 384

class _DataLoaderIterMultiProcess(_DataLoaderIterBase):
    def __init__(self, loader):
        super(_DataLoaderIterMultiProcess, self).__init__(loader)

K
Kaipeng Deng 已提交
385 386 387
        self._persistent_workers = loader._persistent_workers
        self._resume_worker_cnt = 0

388 389 390 391 392
        assert (
            self._num_workers > 0
        ), "Multi-process DataLoader " "invalid num_workers({})".format(
            self._num_workers
        )
393 394 395 396 397

        # subprocess wrokers' result queue
        self._data_queue = None

        # data get from _data_queue will be reordered by _rcvd_idx
398
        # for data order keeping, data index not equal _rcvd_idx
399
        # will be cached in _task_infos
400 401 402
        self._send_idx = 0
        self._rcvd_idx = 0
        self._batches_outstanding = 0
403
        self._task_infos = {}
404
        self._structure_infos = []
405 406 407 408

        # indices outstand as _outstanding_capacity at first, and
        # blocking_queue capacity is also _outstanding_capacity.
        # _outstanding_capacity here to make sure each indices_queue
409 410
        # has at least "_prefetch_factor" indices, and outstanding batch cached
        # output data for at least "_prefetch_factor" iterations(Note that len(_places)
411
        # batches will be composed as an iteration output)
412
        self._outstanding_capacity = self._prefetch_factor * max(
413 414
            self._num_workers, len(self._places)
        )
415

416 417 418
        # see _try_put_indices
        self._thread_lock = threading.Lock()

419 420
        self._base_seed = np.random.randint(low=0, high=sys.maxsize)

421
        # init workers and indices queues and put 2 indices in each indices queue
422 423 424 425
        self._init_workers()
        for _ in range(self._outstanding_capacity):
            self._try_put_indices()

426 427 428
        self._init_thread()
        self._shutdown = False

429 430 431 432 433 434 435 436 437 438
    def _init_workers(self):
        # multiprocess worker and indice queue list initial as empty
        self._workers = []
        self._worker_status = []
        self._indices_queues = []
        self._workers_idx_cycle = itertools.cycle(range(self._num_workers))

        # create data_queue for workers
        self._data_queue = multiprocessing.Queue()

439
        # event for workers and thread, thread event is only need
440 441 442 443 444 445 446 447
        # in multi-processing mode
        self._workers_done_event = multiprocessing.Event()
        self._thread_done_event = threading.Event()

        for i in range(self._num_workers):
            indices_queue = multiprocessing.Queue()
            self._indices_queues.append(indices_queue)
            worker = multiprocessing.Process(
448
                target=_worker_loop,
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
                args=(
                    self._dataset,
                    self._dataset_kind,
                    indices_queue,
                    self._data_queue,
                    self._workers_done_event,
                    self._auto_collate_batch,
                    self._collate_fn,
                    self._drop_last,
                    self._worker_init_fn,
                    i,
                    self._num_workers,
                    self._use_shared_memory,
                    self._base_seed,
                ),
            )
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
            worker.daemon = True
            worker.start()
            self._workers.append(worker)
            self._worker_status.append(True)

        core._set_process_pids(id(self), tuple(w.pid for w in self._workers))
        _set_SIGCHLD_handler()

    def _clear_and_remove_data_queue(self):
        if self._data_queue is not None:
            while True:
                try:
                    self._data_queue.get_nowait()
                except:
                    self._data_queue.cancel_join_thread()
                    self._data_queue.close()
                    break

    def _init_thread(self):
        self._var_names = [v.name for v in self._feed_list]
        self._shapes = [v.shape for v in self._feed_list]
        self._dtypes = [v.dtype for v in self._feed_list]
        self._need_check_feed = [
            v.desc.need_check_feed() for v in self._feed_list
        ]
490
        # if only 1 place, do not need to keep order
491
        self._blocking_queue = core.init_lod_tensor_blocking_queue(
492 493
            core.Variable(), self._outstanding_capacity, len(self._places) > 1
        )
494
        self._reader = core.create_py_reader(
495 496 497 498 499 500 501 502 503 504
            self._blocking_queue,
            self._var_names,
            self._shapes,
            self._dtypes,
            self._need_check_feed,
            self._places,
            self._use_buffer_reader,
            True,
            self._pin_memory,
        )
505 506

        self._thread_done_event = threading.Event()
K
Kaipeng Deng 已提交
507
        # thread event is only need in multi-processing mode
508 509 510
        self._thread = threading.Thread(
            target=self._thread_loop, args=(_current_expected_place(),)
        )
511 512 513
        self._thread.daemon = True
        self._thread.start()

K
Kaipeng Deng 已提交
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
    def _reset(self):
        # resume iteration in following steps
        # 1. Resume workers, clear worker caches
        # put _ResumeIteration to all worker as resume iteration flag
        with self._thread_lock:
            self._resume_worker_cnt = self._num_workers
            for worker_id in range(self._num_workers):
                self._indices_queues[worker_id].put(_ResumeIteration())
                self._batches_outstanding += 1
        # all flag will be check in _thread_loop, simply wait here
        while self._resume_worker_cnt > 0:
            time.sleep(0.5)

        # 2. clear blocking_queue caches
        # in order not to restart the thread, we just clear
        # the blocking_queue cachees instead of recreating one
        while self._blocking_queue.size() >= len(self._places):
            if in_dygraph_mode():
J
Jiabin Yang 已提交
532
                data = core.eager.read_next_tensor_list(
533 534
                    self._reader.read_next_list()[0]
                )
K
Kaipeng Deng 已提交
535
            else:
J
Jiabin Yang 已提交
536 537 538 539 540 541
                if _in_legacy_dygraph():
                    self._reader.read_next_var_list()
                elif self._return_list:
                    self._reader.read_next_list()
                else:
                    data = self._reader.read_next()
K
Kaipeng Deng 已提交
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559

        # 3. reset all states
        self._send_idx = 0
        self._rcvd_idx = 0
        self._batches_outstanding = 0
        self._task_infos = {}
        self._structure_infos = []

        # set all worker status available
        self._worker_status = [True] * self._num_workers

        # 4. reset _sampler_iter and put prefetch indices to start next epoch
        # init workers and indices queues and put 2 indices in each indices queue
        self._sampler_iter = iter(self._index_sampler)
        for _ in range(self._outstanding_capacity):
            self._try_put_indices()

    def _shutdown_worker(self, worker_id, shutdown=False):
560 561 562
        if self._worker_status[worker_id] or (
            self._persistent_workers and shutdown
        ):
563 564 565
            self._indices_queues[worker_id].put(None)
            self._worker_status[worker_id] = False

566
    def _try_shutdown_all(self, timeout=None):
567 568 569 570 571 572 573 574 575 576
        if not self._shutdown:
            try:
                self._exit_thread_expectedly()
                self._clear_and_remove_data_queue()

                # set _workers_done_event should be set before put None
                # to indices_queue, workers wll exit on reading None from
                # indices_queue
                self._workers_done_event.set()
                for i in range(self._num_workers):
K
Kaipeng Deng 已提交
577
                    self._shutdown_worker(i, shutdown=True)
578

579 580 581 582 583 584
                if not self._shutdown:
                    for w in self._workers:
                        w.join(timeout)
                    for q in self._indices_queues:
                        q.cancel_join_thread()
                        q.close()
585 586 587 588
            finally:
                core._erase_process_pids(id(self))
                self._shutdown = True

589
    def _thread_loop(self, legacy_expected_place):
590
        # NOTE(zhiqiu): Set the expected place for new thread as the same as father thread,
591 592
        # and it will call platform::SetDeviceId() in c++ internally.
        # If we do not set cudaDeviceId in new thread, the default cudaDeviceId will be 0,
593
        # Which may cost hundreds of MB of GPU memory on CUDAPlace(0) if calling some cuda
594
        # APIs in this thread.
L
Leo Chen 已提交
595
        core.set_current_thread_name("Dataloader_" + str(id(self)))
596 597
        _set_expected_place(legacy_expected_place)

598 599 600 601 602 603
        while not self._thread_done_event.is_set():
            batch = self._get_data()
            if not self._thread_done_event.is_set():
                if batch is None:
                    self._exit_thread_expectedly()
                else:
K
Kaipeng Deng 已提交
604 605 606 607
                    if isinstance(batch, _ResumeIteration):
                        assert self._resume_worker_cnt > 0
                        self._resume_worker_cnt -= 1
                        continue
608 609 610 611 612 613 614 615 616 617
                    try:
                        # pack as LoDTensorArray
                        array = core.LoDTensorArray()
                        if self._use_shared_memory:
                            for tensor in batch:
                                array.append(tensor)
                        else:
                            # LoDTensor not in shared memory is not
                            # serializable, cannot be create in workers
                            for slot in batch:
618
                                if isinstance(
619 620
                                    slot, (paddle.Tensor, core.eager.Tensor)
                                ):
K
Kaipeng Deng 已提交
621 622
                                    slot = slot.value().get_tensor()
                                elif not isinstance(slot, core.LoDTensor):
623 624 625 626 627 628 629
                                    tmp = core.LoDTensor()
                                    tmp.set(slot, core.CPUPlace())
                                    slot = tmp
                                array.append(slot)

                        if not self._blocking_queue.push(array):
                            self._blocking_queue.close()
K
Kaipeng Deng 已提交
630
                    except Exception as e:
631 632 633 634 635 636 637
                        self._exit_thread_unexpectedly()
                        six.reraise(*sys.exc_info())
                    finally:
                        self._rcvd_idx += 1

    def _get_data(self):
        while not self._thread_done_event.is_set():
638 639 640
            # For IterableDataset, batch indices is generated infinitely
            # for each worker to raise StopIteration, but a StopIteration
            # raising process will discard a batch indices which is count
641
            # in _send_idx but will not increase _rcvd_idx, so we check
642 643
            # whether the worker is still alive here to skip the discarded
            # batch indices and increase _rcvd_idx
644 645 646
            if self._dataset_kind == _DatasetKind.ITER:
                while self._rcvd_idx < self._send_idx:
                    info = self._task_infos[self._rcvd_idx]
647
                    if len(info) == 3 or self._worker_status[info[0]]:
648 649 650 651 652
                        break
                    del self._task_infos[self._rcvd_idx]
                    self._rcvd_idx += 1
                    self._batches_outstanding -= 1
                else:
653 654 655 656 657 658 659 660
                    # NOTE: when _rcvd_idx catch up _send_idx, which means
                    #       one of following:
                    #       1. all 2 * num_workers batches have been loaded
                    #          and stored in _blocking_queue
                    #       2. all data drained
                    #       we need to let _thread blocking at _data_queue
                    #       get_data to inoccupy CPU, otherwise may occupy
                    #       CPU time for model running
K
Kaipeng Deng 已提交
661 662 663 664 665 666 667 668 669
                    # NOTE: in persistent workers mode, do not check data
                    #       drained here, simply let it go to _data_queue
                    #       reading to get _ResumeIteration
                    if not self._persistent_workers:
                        # NOTE: _rcvd_idx and _send_idx only record batches among
                        #       workers, if batches among workers drained, there
                        #       may also be data in blocking queue
                        if self._batches_outstanding < len(self._places):
                            return None
670

671 672 673 674
            if (
                self._rcvd_idx in self._task_infos
                and len(self._task_infos[self._rcvd_idx]) == 3
            ):
675 676 677
                info = self._task_infos.pop(self._rcvd_idx)
                self._structure_infos.append(info[2])
                return info[1]
678

679 680 681
            try:
                # [ avoid hang ]: main process may blocking at _reader.read_next when
                # KeyboardInterrupt, we do following tradeoff:
682
                # 1. get data with timeout, MP_STATUS_CHECK_INTERVAL(5s) as timeout
683 684 685 686 687 688 689
                #    default, if KeyboardInterrupt blocking, failed workers will be
                #    checked and raise RuntimeError to quit DataLoader in timeout
                #    exception handling.
                # 2. if get data timeout and check workers all alive, continue to
                #    get data again
                data = self._data_queue.get(timeout=self._timeout)
            except Exception as e:
690 691 692 693 694
                # check if thread done event set when waiting data
                if self._thread_done_event.is_set():
                    continue

                # check failed workers
695 696 697 698 699 700 701 702
                failed_workers = []
                for i, w in enumerate(self._workers):
                    if self._worker_status[i] and not w.is_alive():
                        failed_workers.append(w)
                        self._shutdown_worker(i)
                if len(failed_workers) > 0:
                    self._exit_thread_unexpectedly()
                    pids = ', '.join(str(w.pid) for w in failed_workers)
703 704 705 706
                    raise RuntimeError(
                        "DataLoader {} workers exit unexpectedly, "
                        "pids: {}".format(len(failed_workers), pids)
                    )
707 708 709 710 711 712 713

                # get(timeout) will call _poll(timeout) and may raise IOError
                if isinstance(e, queue.Empty) or isinstance(e, IOError):
                    # continue on timeout to keep getting data from queue
                    continue

                self._exit_thread_unexpectedly()
714 715 716 717
                logging.error(
                    "DataLoader reader thread failed({}) to read data from "
                    "workers' result queue.".format(e)
                )
718 719
                six.reraise(*sys.exc_info())
            else:
720
                if self._dataset_kind == _DatasetKind.ITER and isinstance(
721 722
                    data, _IterableDatasetStopIteration
                ):
723 724 725 726 727
                    # if a worker get StopIteraion, we shutdown this worker,
                    # note that this batch indices to trigger StopIteration
                    # is discard, outstanding batch number should be decrease
                    # and another indices should be put for other workers
                    # may still working.
K
Kaipeng Deng 已提交
728 729 730 731 732
                    if self._persistent_workers:
                        self._worker_status[data.worker_id] = False
                    else:
                        self._shutdown_worker(data.worker_id)
                        self._batches_outstanding -= 1
733 734 735
                    self._try_put_indices()
                    continue

736
                idx, batch, structure = data
K
Kaipeng Deng 已提交
737

738 739 740 741 742
                if (
                    isinstance(idx, _ResumeIteration)
                    and batch is None
                    and structure is None
                ):
K
Kaipeng Deng 已提交
743 744
                    return idx

745 746 747 748
                if isinstance(batch, _WorkerException):
                    self._exit_thread_unexpectedly()
                    batch.reraise()

749
                if idx == self._rcvd_idx:
750
                    del self._task_infos[idx]
751
                    self._structure_infos.append(structure)
752 753
                    return batch
                else:
754
                    self._task_infos[idx] += (batch, structure)
755 756 757
                    continue

    def _try_put_indices(self):
758 759 760
        assert (
            self._batches_outstanding <= self._outstanding_capacity
        ), "too many indices have been put to queue"
761 762 763 764 765 766 767 768 769 770 771 772 773 774
        # In multi-process mode for IterableDataset, _try_put_indices will
        # be called both in main process(for our implement has blocking queue,
        # and blocking queue read is in main process) and thread, which may
        # cause error following error
        #   1. "ValueError: generator already executing" in next(self._sampler_iter)
        #   2. re-enter in increase _send_idx
        # add a lock for threading save, for _try_put_indices is only a slight
        # function which is not in data reading pipeline, this lock almost no
        # influence on performance
        with self._thread_lock:
            try:
                indices = next(self._sampler_iter)
            except StopIteration:
                return
775

776 777 778 779 780 781
            for i in range(self._num_workers):
                worker_idx = next(self._workers_idx_cycle)
                if self._worker_status[worker_idx]:
                    break
            else:
                return
782

783
            self._indices_queues[worker_idx].put((self._send_idx, indices))
784
            self._task_infos[self._send_idx] = (worker_idx,)
785 786
            self._batches_outstanding += 1
            self._send_idx += 1
787 788 789 790

    def __del__(self):
        self._try_shutdown_all()

791 792 793
    def _shutdown_on_exit(self):
        self._try_shutdown_all(1)

794
    def __next__(self):
795 796 797
        if in_profiler_mode():
            trace_event = profiler.RecordEvent(
                name="_DataLoaderIterMultiProcess",
798 799
                event_type=profiler.TracerEventType.Dataloader,
            )
800
            trace_event.begin()
801
        try:
Z
Zhang Ting 已提交
802 803
            benchmark().check_if_need_record(self)
            benchmark().before_reader()
804 805 806 807 808 809 810 811
            # _batches_outstanding here record the total batch data number
            # in 'from after _try_put_indices to beforeoutput data', this
            # value should be _outstanding_capacity if data is not drained,
            # if _batches_outstanding is less than _places number, there are
            # no enough data to generate next output, close blocking_queue and
            # set _thread_done_event here, py_reader will raise StopIteration,
            # end workers and indices_queues in StopIteration handling
            if self._batches_outstanding < len(self._places):
K
Kaipeng Deng 已提交
812 813 814 815 816
                if self._persistent_workers:
                    raise StopIteration
                else:
                    self._thread_done_event.set()
                    self._blocking_queue.close()
817 818

            if in_dygraph_mode():
J
Jiabin Yang 已提交
819
                data = core.eager.read_next_tensor_list(
820 821
                    self._reader.read_next_list()[0]
                )
822
                data = _restore_batch(data, self._structure_infos.pop(0))
823
            else:
J
Jiabin Yang 已提交
824 825 826
                if _in_legacy_dygraph():
                    data = self._reader.read_next_var_list()
                    data = _restore_batch(data, self._structure_infos.pop(0))
827
                else:
J
Jiabin Yang 已提交
828 829 830 831
                    if self._return_list:
                        data = self._reader.read_next_list()
                        for i in range(len(data)):
                            data[i] = data[i]._move_to_list()
832 833 834
                        structs = [
                            self._structure_infos.pop(0)
                            for _ in range(len(self._places))
J
Jiabin Yang 已提交
835
                        ]
836 837 838
                        data = [
                            _restore_batch(d, s) for d, s in zip(data, structs)
                        ]
J
Jiabin Yang 已提交
839 840 841 842 843 844 845
                        # static graph organized data on multi-device with list, if
                        # place number is 1, there is only 1 device, extra the data
                        # from list for devices to be compatible with dygraph mode
                        if len(self._places) == 1:
                            data = data[0]
                    else:
                        data = self._reader.read_next()
846
            self._on_output_batch()
Z
Zhang Ting 已提交
847
            benchmark().after_reader()
848 849
            return data
        except StopIteration:
K
Kaipeng Deng 已提交
850 851 852
            if not self._persistent_workers:
                self._reader.shutdown()
                self._try_shutdown_all()
853
            six.reraise(*sys.exc_info())
C
chenjian 已提交
854
        finally:
855 856
            if in_profiler_mode():
                trace_event.end()
857 858 859 860 861 862 863 864 865

    # python2 compatibility
    def next(self):
        return self.__next__()

    def _on_output_batch(self):
        for _ in range(len(self._places)):
            self._batches_outstanding -= 1
            self._try_put_indices()