dataloader_iter.py 21.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import six
import sys
import time
import signal
import logging
import itertools
import threading
import numpy as np
import multiprocessing

# NOTE: queue has a different name in python2 and python3
if six.PY2:
    import Queue as queue
else:
    import queue

from .. import core
from ..framework import in_dygraph_mode
from ..multiprocess_utils import CleanupFuncRegistrar, _cleanup_mmap, _set_SIGCHLD_handler

# multi-process worker check indices queue interval, avoid
# hanging in subprocess data loading
MP_INDICES_CHECK_INTERVAL = 5


41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
def default_collate_fn(batch):
    """
    Default batch collating function for :code:`fluid.io.DataLoader`,
    batch should be a list of samples, and each sample should be a list
    of fields as follows:
    
    [[filed1, filed2, ...], [filed1, filed2, ...], ...]
    
    This default collate function zipped each filed together and stack
    each filed as the batch field as follows:

    [batch_filed1, batch_filed2, ...]

    Args:  
        batch(list of list of numpy array): the batch data, each fields
              should be a numpy array, each sample should be a list of
              fileds, and batch should be a list of sample.
    
    Returns:
        a list of numpy array: collated batch
    """
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
    sample = batch[0]
    # dataset has only 1 field
    if isinstance(sample, np.ndarray):
        return [np.stack(batch, axis=0)]

    # batch each field
    slots = []
    for items in batch:
        for i, item in enumerate(items):
            if len(slots) < len(items):
                slots.append([item])
            else:
                slots[i].append(item)
    return [np.stack(slot, axis=0) for slot in slots]


class ParentWatchDog(object):
    def __init__(self):
        self._parent_pid = os.getppid()
        self._parent_alive = True

    def is_alive(self):
        if self._parent_alive:
            self._parent_alive = os.getppid() == self._parent_pid
        return self._parent_alive


class _DataLoaderIterBase(object):
    """
    Iterator implement of DataLoader, will load and feed mini-batch
    data by setting in given dataloader.

    Args:
        loader(instance of DataLoader): instance of `fluid.io.DataLoader`
    """

    def __init__(self, loader):
        self._dataset = loader.dataset
        self._feed_list = loader.feed_list or []
        self._places = loader.places
        self._return_list = loader.return_list
        self._batch_sampler = loader.batch_sampler
        self._sampler_iter = iter(loader.batch_sampler)
105
        self._collate_fn = loader.collate_fn or default_collate_fn
106 107 108 109 110
        self._num_workers = loader.num_workers
        self._use_buffer_reader = loader.use_buffer_reader
        self._use_shared_memory = loader.use_shared_memory
        self._timeout = loader.timeout if loader.timeout > 0 else MP_INDICES_CHECK_INTERVAL
        self._worker_init_fn = loader.worker_init_fn
111
        self._pin_memory = loader.pin_memory
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151

        # LoDTensorBlockingQueue instance for create_py_reader and a thread
        # to put mini-batch data to self._blocking_queue, mini-batch data
        # will be get from:
        # 1. multi-process mode: get data from workers' result queue
        # 2. single-process mode: read mini-batch data in main process
        self._blocking_queue = None
        self._thread = None
        self._thread_done_event = threading.Event()

    def __iter__(self):
        return self

    def __len__(self):
        return len(self._batch_sampler)


class _DataLoaderIterSingleProcess(_DataLoaderIterBase):
    """
    Single process implement of DataLoaderIter, loading data from
    loader.data in main process
    """

    def __init__(self, loader):
        super(_DataLoaderIterSingleProcess, self).__init__(loader)

        # NOTE: len(self._places) batch data compose as an output
        # iteration, set blocking_queue can cache 2 iteration datas
        # at most here
        self._blocking_queue_capacity = 2 * len(self._places)

        self._init_thread()

    def _init_thread(self):
        self._var_names = [v.name for v in self._feed_list]
        self._shapes = [v.shape for v in self._feed_list]
        self._dtypes = [v.dtype for v in self._feed_list]
        self._need_check_feed = [
            v.desc.need_check_feed() for v in self._feed_list
        ]
152
        # if only 1 place, do not need to keep order
153
        self._blocking_queue = core.init_lod_tensor_blocking_queue(
154 155
            core.Variable(), self._blocking_queue_capacity,
            len(self._places) > 1)
156 157
        self._reader = core.create_py_reader(
            self._blocking_queue, self._var_names, self._shapes, self._dtypes,
158 159
            self._need_check_feed, self._places, self._use_buffer_reader, True,
            self._pin_memory)
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306

        self._thread = threading.Thread(target=self._thread_loop)
        self._thread.daemon = True
        self._thread.start()

    def _thread_loop(self):
        try:
            for indices in self._sampler_iter:
                # read data from dataset in mini-batch
                batch = [self._dataset[i] for i in indices]
                if self._collate_fn is not None:
                    batch = self._collate_fn(batch)

                # pack as LoDTensorArray
                array = core.LoDTensorArray()
                for slot in batch:
                    if not isinstance(slot, core.LoDTensor):
                        self._check_input_array(slot)
                        tmp = core.LoDTensor()
                        tmp.set(slot, core.CPUPlace())
                        slot = tmp

                    array.append(slot)

                if not self._blocking_queue.push(array):
                    break

            self._blocking_queue.close()
            self._thread = None
        except Exception:
            self._blocking_queue.kill()
            self._thread = None
            logging.warning("DataLoader reader thread raised an exception.")
            six.reraise(*sys.exc_info())

    @classmethod
    def _check_input_array(cls, item):
        arr = np.array(item)
        if arr.dtype == np.object:
            raise TypeError((
                "\n\tFaild to convert input data to a regular ndarray :\n\t* Usually "
                "this means the input data contains nested lists with different lengths. "
                "\n\t* Check the reader function passed to 'decorate_batch_generator'"
                " to locate the data causes this issue.\n\t* Please consider using "
                "'fluid.create_lod_tensor' to convert it to a LoD-Tensor."))

    def __next__(self):
        try:
            if in_dygraph_mode():
                return self._reader.read_next_var_list()
            else:
                if self._return_list:
                    return self._reader.read_next_list()
                else:
                    return self._reader.read_next()
        except StopIteration:
            self._reader.reset()
            six.reraise(*sys.exc_info())

    # python2 compatibility
    def next(self):
        return self.__next__()


class _DataLoaderIterMultiProcess(_DataLoaderIterBase):
    def __init__(self, loader):
        super(_DataLoaderIterMultiProcess, self).__init__(loader)

        assert self._num_workers > 0,  "Multi-process DataLoader " \
                    "invalid num_workers({})".format(self._num_workers)

        # subprocess wrokers' result queue
        self._data_queue = None

        # data get from _data_queue will be reordered by _rcvd_idx
        # for data order keeping, data index not equal _rcvd_idx 
        # will be cached in _reorder_dict
        self._send_idx = 0
        self._rcvd_idx = 0
        self._batches_outstanding = 0
        self._reorder_dict = {}

        # indices outstand as _outstanding_capacity at first, and
        # blocking_queue capacity is also _outstanding_capacity.
        # _outstanding_capacity here to make sure each indices_queue
        # has at least 2 indices, and outstanding batch cached
        # output data for at least 2 iterations(Note that len(_places)
        # batches will be composed as an iteration output)
        self._outstanding_capacity = 2 * max(self._num_workers,
                                             len(self._places))

        self._init_workers()
        self._init_thread()

        self._shutdown = False

        for _ in range(self._outstanding_capacity):
            self._try_put_indices()

    def _init_workers(self):
        # multiprocess worker and indice queue list initial as empty
        self._workers = []
        self._worker_status = []
        self._indices_queues = []
        self._workers_idx_cycle = itertools.cycle(range(self._num_workers))

        # create data_queue for workers
        self._data_queue = multiprocessing.Queue()

        # event for workers and thread, thread event is only need 
        # in multi-processing mode
        self._workers_done_event = multiprocessing.Event()
        self._thread_done_event = threading.Event()

        for i in range(self._num_workers):
            indices_queue = multiprocessing.Queue()
            self._indices_queues.append(indices_queue)
            worker = multiprocessing.Process(
                target=self._worker_loop,
                args=(self._dataset, indices_queue, self._data_queue,
                      self._workers_done_event, self._collate_fn,
                      self._worker_init_fn, i))
            worker.daemon = True
            worker.start()
            self._workers.append(worker)
            self._worker_status.append(True)

        core._set_process_pids(id(self), tuple(w.pid for w in self._workers))
        _set_SIGCHLD_handler()

    def _clear_and_remove_data_queue(self):
        if self._data_queue is not None:
            while True:
                try:
                    self._data_queue.get_nowait()
                except:
                    self._data_queue.cancel_join_thread()
                    self._data_queue.close()
                    break

    def _init_thread(self):
        self._var_names = [v.name for v in self._feed_list]
        self._shapes = [v.shape for v in self._feed_list]
        self._dtypes = [v.dtype for v in self._feed_list]
        self._need_check_feed = [
            v.desc.need_check_feed() for v in self._feed_list
        ]
307
        # if only 1 place, do not need to keep order
308
        self._blocking_queue = core.init_lod_tensor_blocking_queue(
309
            core.Variable(), self._outstanding_capacity, len(self._places) > 1)
310 311
        self._reader = core.create_py_reader(
            self._blocking_queue, self._var_names, self._shapes, self._dtypes,
312 313
            self._need_check_feed, self._places, self._use_buffer_reader, True,
            self._pin_memory)
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470

        self._thread_done_event = threading.Event()
        self._thread = threading.Thread(target=self._thread_loop)
        self._thread.daemon = True
        self._thread.start()

    def _shutdown_worker(self, worker_id):
        if self._worker_status[worker_id]:
            self._indices_queues[worker_id].put(None)
            self._worker_status[worker_id] = False

    def _try_shutdown_all(self):
        if not self._shutdown:
            try:
                self._exit_thread_expectedly()
                self._clear_and_remove_data_queue()

                # set _workers_done_event should be set before put None
                # to indices_queue, workers wll exit on reading None from
                # indices_queue
                self._workers_done_event.set()
                for i in range(self._num_workers):
                    self._shutdown_worker(i)

                for w in self._workers:
                    w.join()
                for q in self._indices_queues:
                    q.cancel_join_thread()
                    q.close()
            finally:
                core._erase_process_pids(id(self))
                self._shutdown = True

    def _exit_thread_expectedly(self):
        self._thread_done_event.set()
        self._blocking_queue.close()

    def _exit_thread_unexpectedly(self):
        self._thread_done_event.set()
        self._blocking_queue.kill()
        logging.error("DataLoader reader thread raised an exception!")

    def _worker_loop(self, dataset, indices_queue, out_queue, done_event,
                     collate_fn, init_fn, worker_id):
        try:
            # NOTE: [ mmap files clear ] When the child process exits unexpectedly,
            # some shared memory objects may have been applied for but have not yet
            # been put into the inter-process Queue. This part of the object needs
            # to be cleaned up when the process ends.
            CleanupFuncRegistrar.register(_cleanup_mmap)

            # set signal handler
            core._set_process_signal_handler()

            init_exception = None
            if init_fn is not None:
                try:
                    init_fn(worker_id)
                except:
                    init_exception = Exception("init_fn failed in worker {}: " \
                                         "{}".format(worker_id, sys.exc_info()))

            parent_watch_dog = ParentWatchDog()

            while parent_watch_dog.is_alive():
                try:
                    data = indices_queue.get(MP_INDICES_CHECK_INTERVAL)
                except queue.Empty:
                    continue

                # None as poison piil, so worker event should be set
                if data is None:
                    assert done_event.is_set(
                    ), "get None when worker done_event set"
                    break
                # If worker done event is set but get still get data in
                # indices_queue, remaining data should be get and skipped.
                if done_event.is_set():
                    continue

                idx, indices = data
                try:
                    if init_exception is not None:
                        batch = init_exception
                        init_exception = None
                    else:
                        batch = [dataset[i] for i in indices]
                        if self._collate_fn is not None:
                            batch = self._collate_fn(batch)
                except Exception as e:
                    out_queue.put((idx, e))
                else:
                    if self._use_shared_memory:
                        tensor_list = core._convert_to_tensor_list(batch)
                        out_queue.put((idx, tensor_list))
                        core._remove_tensor_list_mmap_fds(tensor_list)
                    else:
                        out_queue.put((idx, batch))
        except KeyboardInterrupt:
            # NOTE: Main process will raise KeyboardInterrupt anyways, ignore it in child process
            pass
        except:
            six.reraise(*sys.exc_info())
        finally:
            if self._use_shared_memory:
                _cleanup_mmap()

    def _thread_loop(self):
        while not self._thread_done_event.is_set():
            batch = self._get_data()
            if not self._thread_done_event.is_set():
                if batch is None:
                    self._exit_thread_expectedly()
                elif isinstance(batch, Exception):
                    self._exit_thread_unexpectedly()
                else:
                    try:
                        # pack as LoDTensorArray
                        array = core.LoDTensorArray()
                        if self._use_shared_memory:
                            for tensor in batch:
                                array.append(tensor)
                        else:
                            # LoDTensor not in shared memory is not
                            # serializable, cannot be create in workers
                            for slot in batch:
                                if not isinstance(slot, core.LoDTensor):
                                    # self._check_input_array(slot)
                                    tmp = core.LoDTensor()
                                    tmp.set(slot, core.CPUPlace())
                                    slot = tmp
                                array.append(slot)

                        if not self._blocking_queue.push(array):
                            self._blocking_queue.close()
                    except:
                        self._exit_thread_unexpectedly()
                        six.reraise(*sys.exc_info())
                    finally:
                        self._rcvd_idx += 1

    def _get_data(self):
        if self._rcvd_idx in self._reorder_dict.keys():
            return self._reorder_dict.pop(self._rcvd_idx)

        while not self._thread_done_event.is_set():
            try:
                # [ avoid hang ]: main process may blocking at _reader.read_next when
                # KeyboardInterrupt, we do following tradeoff:
                # 1. get data with timeout, MP_INDICES_CHECK_INTERVAL(5s) as timeout
                #    default, if KeyboardInterrupt blocking, failed workers will be
                #    checked and raise RuntimeError to quit DataLoader in timeout
                #    exception handling.
                # 2. if get data timeout and check workers all alive, continue to
                #    get data again
                data = self._data_queue.get(timeout=self._timeout)
            except Exception as e:
471 472 473 474 475
                # check if thread done event set when waiting data
                if self._thread_done_event.is_set():
                    continue

                # check failed workers
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
                failed_workers = []
                for i, w in enumerate(self._workers):
                    if self._worker_status[i] and not w.is_alive():
                        failed_workers.append(w)
                        self._shutdown_worker(i)
                if len(failed_workers) > 0:
                    self._exit_thread_unexpectedly()
                    pids = ', '.join(str(w.pid) for w in failed_workers)
                    raise RuntimeError("DataLoader {} workers exit unexpectedly, " \
                                "pids: {}".format(len(failed_workers), pids))

                # get(timeout) will call _poll(timeout) and may raise IOError
                if isinstance(e, queue.Empty) or isinstance(e, IOError):
                    # continue on timeout to keep getting data from queue
                    continue

                self._exit_thread_unexpectedly()
                logging.error("DataLoader reader thread failed({}) to read data from " \
                              "workers' result queue.".format(e))
                six.reraise(*sys.exc_info())
            else:
                idx, batch = data
                if idx == self._rcvd_idx:
                    return batch
                else:
                    self._reorder_dict[idx] = batch
                    continue

    def _try_put_indices(self):
        assert self._send_idx - self._rcvd_idx <= self._outstanding_capacity, \
                    "too many indices have been put to queue"
        try:
            indices = next(self._sampler_iter)
        except StopIteration:
            return

        worker_idx = next(self._workers_idx_cycle)
        self._indices_queues[worker_idx].put((self._send_idx, indices))
        self._batches_outstanding += 1
        self._send_idx += 1

    def __del__(self):
        self._try_shutdown_all()

    def __next__(self):
        try:
            # _batches_outstanding here record the total batch data number
            # in 'from after _try_put_indices to beforeoutput data', this
            # value should be _outstanding_capacity if data is not drained,
            # if _batches_outstanding is less than _places number, there are
            # no enough data to generate next output, close blocking_queue and
            # set _thread_done_event here, py_reader will raise StopIteration,
            # end workers and indices_queues in StopIteration handling
            if self._batches_outstanding < len(self._places):
                self._thread_done_event.set()
                self._blocking_queue.close()

            if in_dygraph_mode():
                data = self._reader.read_next_var_list()
            else:
                if self._return_list:
                    data = self._reader.read_next_list()
                    # static graph organized data on multi-device with list, if
                    # place number is 1, there is only 1 device, extra the data
                    # from list for devices to be compatible with dygraph mode
                    if len(self._places) == 1:
                        data = data[0]
                else:
                    data = self._reader.read_next()
            self._on_output_batch()
            return data
        except StopIteration:
            self._reader.reset()
            self._try_shutdown_all()
            six.reraise(*sys.exc_info())

    # python2 compatibility
    def next(self):
        return self.__next__()

    def _on_output_batch(self):
        for _ in range(len(self._places)):
            self._batches_outstanding -= 1
            self._try_put_indices()