reorg_op.h 4.0 KB
Newer Older
J
JiabinYang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifndef PADDLE_FLUID_OPERATORS_REORG_OP_H_
#define PADDLE_FLUID_OPERATORS_REORG_OP_H_
#endif  // PADDLE_FLUID_OPERATORS_REORG_OP_H_

#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/for_range.h"

namespace paddle {
namespace operators {

template <typename T>
class reorg_cpu {
 public:
  HOSTDEVICE reorg_cpu(const T *x, int64_t w, int64_t h, int64_t c,
                       int64_t batch, int64_t stride, int64_t forward, T *out)
      : x_(x),
        w_(w),
        h_(h),
        c_(c),
        batch_(batch),
        stride_(stride),
        forward_(forward),
        out_(out) {}

  HOSTDEVICE void operator()(int64_t in_index) {
    int64_t out_c = c_ / (stride_ * stride_);
    // calculate each dim position with index of tensor
    int64_t b = in_index / (c_ * h_ * w_);
    int64_t k = (in_index % (c_ * h_ * w_)) / (h_ * w_);
    int64_t j = ((in_index % (c_ * h_ * w_)) % (h_ * w_)) / w_;
    int64_t i = ((in_index % (c_ * h_ * w_)) % (h_ * w_)) % w_;

    int64_t c2 = k % out_c;
    int64_t offset = k / out_c;
    int64_t w2 = i * stride_ + offset % stride_;
    int64_t h2 = j * stride_ + offset / stride_;
    int64_t out_index =
        w2 + w_ * stride_ * (h2 + h_ * stride_ * (c2 + out_c * b));
    if (forward_)
      out_[out_index] = x_[in_index];
    else
      out_[in_index] = x_[out_index];
  }

 private:
  const T *x_;
  int64_t w_, h_, c_, batch_, stride_, forward_;
  T *out_;
};

template <typename DeviceContext, typename T>
class ReorgKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    auto *out = context.Output<framework::LoDTensor>("Out");
    auto *x = context.Input<framework::LoDTensor>("X");
    auto stride = context.Attr<int64_t>("stride");
    auto in_dims = x->dims();
    out->mutable_data(context.GetPlace(), x->type());

    auto out_dims = out->dims();
    auto B = in_dims[0];
    auto C = in_dims[1];
    auto H = in_dims[2];
    auto W = in_dims[3];
    platform::ForRange<DeviceContext> for_range(
        context.template device_context<DeviceContext>(),
        static_cast<size_t>(x->numel()));

    auto *x_data = x->data<T>();
    auto *out_data = out->data<T>();
    paddle::operators::reorg_cpu<T> reorg(x_data, W, H, C, B, stride, 1,
                                          out_data);
    for_range(reorg);

    out->Resize(out_dims);
  }
};

template <typename DeviceContext, typename T>
class ReorgGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    auto *d_out =
        context.Input<framework::LoDTensor>(framework::GradVarName("Out"));
    auto *d_x =
        context.Output<framework::LoDTensor>(framework::GradVarName("X"));
    auto stride = context.Attr<int64_t>("stride");
    auto in_dims = d_x->dims();
    d_x->mutable_data(context.GetPlace(), d_out->type());

    auto B = in_dims[0];
    auto C = in_dims[1];
    auto H = in_dims[2];
    auto W = in_dims[3];

    platform::ForRange<DeviceContext> for_range(
        context.template device_context<DeviceContext>(),
        static_cast<size_t>(d_x->numel()));

    auto *dx_data = d_x->data<T>();
    auto *dout_data = d_out->data<T>();

    paddle::operators::reorg_cpu<T> reorg(dout_data, W, H, C, B, stride, 0,
                                          dx_data);
    for_range(reorg);

    d_x->Resize(in_dims);
  }
};

}  // namespace operators
}  // namespace paddle