activation_op.cc 22.6 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Q
qijun 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Q
qijun 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Q
qijun 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/activation_op.h"
16

T
tink2123 已提交
17
#include <memory>
D
dzhwinter 已提交
18
#include <string>
19
#include <type_traits>
T
tink2123 已提交
20
#include <unordered_map>
21
#include <vector>
22

23
#include "paddle/fluid/framework/op_version_registry.h"
24
#include "paddle/fluid/operators/common_infer_shape_functions.h"
25
#include "paddle/fluid/operators/mkldnn/mkldnn_activation_op.h"
26
#include "paddle/phi/backends/dynload/port.h"
C
Charles-hit 已提交
27
#include "paddle/phi/infermeta/backward.h"
Q
qijun 已提交
28

A
Adam 已提交
29 30
DECLARE_bool(use_mkldnn);

Q
qijun 已提交
31 32 33
namespace paddle {
namespace operators {

34 35
template <typename GradFunctor>
static constexpr bool CanInplaceAct() {
36 37
  return GradFunctor::FwdDeps() == ActBwdOpFwdDeps::kDepOut ||
         GradFunctor::FwdDeps() == ActBwdOpFwdDeps::kNoDeps;
38 39
}

40 41 42 43 44 45 46 47 48 49 50 51 52 53
#define REGISTER_ACTIVATION_OP_MAKER(OP_NAME, OP_COMMENT)           \
  class OP_NAME##OpMaker                                            \
      : public ::paddle::framework::OpProtoAndCheckerMaker {        \
   public:                                                          \
    void Make() override {                                          \
      AddInput("X",                                                 \
               "Input of " #OP_NAME                                 \
               " operator, an N-D Tensor, with data type float32, " \
               "float64 or float16.");                              \
      AddOutput("Out",                                              \
                "Output of " #OP_NAME                               \
                " operator, a Tensor with shape same as input.");   \
      AddComment(OP_COMMENT);                                       \
    }                                                               \
D
dzhwinter 已提交
54
  }
D
dzhwinter 已提交
55

H
hong 已提交
56 57
template <ActBwdOpFwdDeps kDepValue, typename T>
class ActivationGradOpMaker : public framework::SingleGradOpMaker<T> {
58
 public:
H
hong 已提交
59
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
60 61

 protected:
62
  void Apply(GradOpPtr<T> op) const override {
H
hong 已提交
63 64 65 66
    op->SetType(this->ForwardOpType() + "_grad");
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
67

A
Adam 已提交
68 69
    if ((static_cast<int>(kDepValue) &
         static_cast<int>(ActBwdOpFwdDeps::kDepX)) ||
70 71
        FLAGS_use_mkldnn ||
        (op->HasAttr("use_mkldnn") &&
R
Ruibiao Chen 已提交
72
         PADDLE_GET_CONST(bool, op->GetAttr("use_mkldnn")))) {
73
      op->SetInput("X", this->Input("X"));  // x
74 75 76 77
    }

    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepOut)) {
78
      op->SetInput("Out", this->Output("Out"));  // out
79
    }
D
dzhwinter 已提交
80
  }
81
};
D
dzhwinter 已提交
82

83 84 85
framework::OpKernelType GetKernelType(const framework::ExecutionContext& ctx,
                                      const framework::OperatorWithKernel& oper,
                                      const std::string& name) {
86
  auto data_type = oper.IndicateVarDataType(ctx, name);
87 88 89 90 91 92 93 94 95 96 97
  // FIXME(liuwei1031) temporarily disable the code to unblock users
  // TODO(liuwei1031) figure out the reason behind
  // https://github.com/PaddlePaddle/Paddle/issues/16096
  // and re-enable this in the future
  // #ifdef PADDLE_WITH_CUDA
  //   auto it1 = oper.Attrs().find("use_cudnn");
  //   if (it1 != oper.Attrs().end() && platform::CanCUDNNBeUsed(ctx)) {
  //     library = framework::LibraryType::kCUDNN;
  //   }
  // #endif
  return framework::OpKernelType(data_type, ctx.GetPlace());
98 99
}

Q
qijun 已提交
100 101 102 103
class ActivationOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

104
  void InferShape(framework::InferShapeContext* ctx) const override {
105
    ctx->ShareDim("X", /*->*/ "Out");
F
fengjiayi 已提交
106
    ctx->ShareLoD("X", /*->*/ "Out");
Q
qijun 已提交
107
  }
108

109
 protected:
110 111 112 113
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "X");
  }
Q
qijun 已提交
114 115
};

C
chengduo 已提交
116 117 118
class ActivationOpInferVarType
    : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
119
  std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
C
chengduo 已提交
120
      const override {
121 122
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
123 124 125
  }
};

Q
qijun 已提交
126 127 128 129
class ActivationOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

130
  void InferShape(framework::InferShapeContext* ctx) const override {
131 132 133
    auto out_grad_name = framework::GradVarName("Out");
    ctx->ShareDim(out_grad_name, framework::GradVarName("X"));
    ctx->ShareLoD(out_grad_name, framework::GradVarName("X"));
Q
qijun 已提交
134
  }
135

136
 protected:
137 138
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
139
    return GetKernelType(ctx, *this, framework::GradVarName("Out"));
140
  }
Q
qijun 已提交
141 142
};

143 144
class BReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
145
  void Make() override {
146 147 148 149 150 151
    AddInput("X",
             "The input is a multi-dimensional Tensor. The data type is "
             "float32, float64.");
    AddOutput("Out",
              "The output is a multi-dimensional Tensor which has same "
              "dimension and data type as the ``X``.");
152 153 154 155
    AddAttr<float>("t_min", "The min marginal value of BRelu")
        .SetDefault(static_cast<float>(0));
    AddAttr<float>("t_max", "The max marginal value of BRelu")
        .SetDefault(static_cast<float>(24));
K
Kexin Zhao 已提交
156
    AddComment(R"DOC(
K
kexinzhao 已提交
157
BRelu Activation Operator.
K
Kexin Zhao 已提交
158

159
$$out = \min(\max(x, t_{min}), t_{max})$$
K
Kexin Zhao 已提交
160 161

)DOC");
162 163 164 165 166
  }
};

class SoftReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
167
  void Make() override {
168
    AddInput("X", "Input of SoftRelu operator");
F
fengjiayi 已提交
169
    AddOutput("Out", "Output of SoftRelu operator");
170 171
    AddAttr<float>("threshold", "The threshold value of SoftRelu")
        .SetDefault(40.0f);
K
Kexin Zhao 已提交
172
    AddComment(R"DOC(
K
kexinzhao 已提交
173
SoftRelu Activation Operator.
K
Kexin Zhao 已提交
174

175
$$out = \ln(1 + \exp(\max(\min(x, threshold), -threshold)))$$
K
Kexin Zhao 已提交
176 177

)DOC");
178 179 180
  }
};

181 182
class Relu6OpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
183
  void Make() override {
Z
zhupengyang 已提交
184 185 186 187 188 189 190 191
    AddInput("X",
             "Input of relu6 operator, an N-D Tensor, "
             "with data type float32, float64.");
    AddOutput(
        "Out",
        "Output of relu6 operator, a Tensor with the same shape as input.");
    AddAttr<float>("threshold",
                   "The threshold value of Relu6. Default is 6.0. ")
192
        .SetDefault(6.0f);
K
Kexin Zhao 已提交
193
    AddComment(R"DOC(
K
kexinzhao 已提交
194
Relu6 Activation Operator.
K
Kexin Zhao 已提交
195

196
$$out = \min(\max(0, x), threshold)$$
K
Kexin Zhao 已提交
197 198

)DOC");
199 200 201
  }
};

202 203
class PowOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
204
  void Make() override {
205
    AddInput("X", "Input of Pow operator");
206 207 208 209 210
    AddInput("FactorTensor",
             "(Tensor<float>, optional). If provided, pow will use this"
             "The shape of FactorTensor MUST BE [1]."
             "it has higher priority than attr(factor).")
        .AsDispensable();
F
fengjiayi 已提交
211
    AddOutput("Out", "Output of Pow operator");
212
    AddAttr<float>("factor", "The exponential factor of Pow").SetDefault(1.0f);
K
Kexin Zhao 已提交
213
    AddComment(R"DOC(
K
kexinzhao 已提交
214
Pow Activation Operator.
K
Kexin Zhao 已提交
215

216
$$out = x^{factor}$$
K
Kexin Zhao 已提交
217 218

)DOC");
219 220 221 222 223
  }
};

class STanhOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
224
  void Make() override {
225 226
    AddInput("X",
             "Input of STanh operator."
N
Noel 已提交
227
             " A Tensor with type float32, float64.");
228 229 230
    AddOutput("Out", "Output of STanh operator. A Tensor with type float32.");
    AddAttr<float>("scale_a", "The scale parameter of a for the input. ")
        .SetDefault(0.67f);
231 232
    AddAttr<float>("scale_b", "The scale parameter of b for the input")
        .SetDefault(1.7159f);
K
Kexin Zhao 已提交
233
    AddComment(R"DOC(
K
kexinzhao 已提交
234
STanh Activation Operator.
K
Kexin Zhao 已提交
235

Y
Yan Chunwei 已提交
236
$$out = b * \\frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}$$
K
Kexin Zhao 已提交
237 238

)DOC");
Q
qijun 已提交
239 240 241
  }
};

A
Abhinav Arora 已提交
242 243
class SwishOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
244
  void Make() override {
A
Abhinav Arora 已提交
245
    AddInput("X", "Input of Swish operator");
F
fengjiayi 已提交
246
    AddOutput("Out", "Output of Swish operator");
A
Abhinav Arora 已提交
247 248 249 250
    AddAttr<float>("beta", "Constant beta of swish operator").SetDefault(1.0f);
    AddComment(R"DOC(
Swish Activation Operator.

251
$$out = \\frac{x}{1 + e^{- \beta \ x}}$$
A
Abhinav Arora 已提交
252 253 254 255 256

)DOC");
  }
};

257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
class MishOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of Mish operator");
    AddOutput("Out", "Output of Mish operator");
    AddAttr<float>(
        "threshold",
        "Constant threshold of softplus in Mish operator. Approximate value "
        "of softplus will be used if absolute value of input is greater than "
        ":attr:`threshold`")
        .SetDefault(20.f);
    AddComment(R"DOC(
Mish Activation Operator.

..  math::
    softplus(x) = \begin{cases}
            x, \text{if } x > \text{threshold} \\
            \ln(1 + e^{x}),  \text{otherwise}
          \end{cases}

    out = x * \tanh(softplus(x))

)DOC");
  }
};

H
huangjun12 已提交
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
class HardSwishOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of HardSwish operator");
    AddOutput("Out", "Output of HardSwish operator");
    AddAttr<float>("threshold", "The threshold parameter of HardSwish operator")
        .SetDefault(6.0f);
    AddAttr<float>("scale", "The scale parameter of HardSwish operator")
        .SetDefault(6.0f);
    AddAttr<float>("offset", "The offset parameter of HardSwish operator")
        .SetDefault(3.0f);
    AddComment(R"DOC(
HardSwish Activation Operator.

The hard version of swish(https://arxiv.org/pdf/1905.02244.pdf).

299
$$out = \frac{x * (min(max(0, x+offset), threshold))}{scale}$$
H
huangjun12 已提交
300 301 302 303 304 305 306 307 308

The threshold and scale should be positive. The offset can be either positive or negative.
The default parameters are set according to the above reference.
It is recommended to use the defaults for this activation.

)DOC");
  }
};

309
template <ActBwdOpFwdDeps kDepValue>
310 311 312 313 314
class ActivationOpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
315 316
    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepX)) {
317
      if (ctx->HasOutput("DX")) {
318 319 320
        ctx->ShareDim("X", "DX");
        ctx->ShareLoD("X", "DX");
      }
321
      if (ctx->HasOutput("DDOut")) {
322 323 324
        ctx->ShareDim("X", "DDOut");
        ctx->ShareLoD("X", "DDOut");
      }
325
    }
326 327
    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepOut)) {
328
      if (ctx->HasOutput("DOut")) {
329 330 331
        ctx->ShareDim("Out", "DOut");
        ctx->ShareLoD("Out", "DOut");
      }
332 333 334 335
      if (ctx->HasOutput("DDOut")) {
        ctx->ShareDim("Out", "DDOut");
        ctx->ShareLoD("Out", "DDOut");
      }
336 337 338 339
      if (ctx->HasOutput("DOutNew")) {
        ctx->ShareDim("Out", "DOutNew");
        ctx->ShareLoD("Out", "DOutNew");
      }
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "DDX");
  }
};

template <ActBwdOpFwdDeps kDepValue>
class ActivationOpDoubleGrad2 : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
356 357
    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepX)) {
358 359 360 361 362
      if (ctx->HasOutput("DDOut")) {
        ctx->ShareDim("X", "DDOut");
        ctx->ShareLoD("X", "DDOut");
      }
    }
363 364
    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepOut)) {
365
      if (ctx->HasOutput("DDOut")) {
366 367 368
        ctx->ShareDim("Out", "DDOut");
        ctx->ShareLoD("Out", "DDOut");
      }
369 370 371 372 373 374 375 376 377 378
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "DDX");
  }
};

379 380 381 382 383 384
template <ActBwdOpFwdDeps kDepValue>
class ActivationOpTripleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
385 386
    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepX)) {
387 388 389 390 391 392 393 394 395
      if (ctx->HasOutput("DX")) {
        ctx->ShareDim("X", "DX");
        ctx->ShareLoD("X", "DX");
      }
      if (ctx->HasOutput("DDOut")) {
        ctx->ShareDim("X", "DDOut");
        ctx->ShareLoD("X", "DDOut");
      }
    }
396 397
    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepOut)) {
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
      if (ctx->HasOutput("D_DOut")) {
        ctx->ShareDim("Out", "D_DOut");
        ctx->ShareLoD("Out", "D_DOut");
      }
      if (ctx->HasOutput("D_OutNew")) {
        ctx->ShareDim("Out", "D_OutNew");
        ctx->ShareLoD("Out", "D_OutNew");
      }
      if (ctx->HasOutput("D_DDx")) {
        ctx->ShareDim("DDX", "D_DDx");
        ctx->ShareLoD("DDX", "D_DDx");
      }
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "DDX");
  }
};

420
DECLARE_INPLACE_OP_INFERER(ActivationGradOpInplaceInferer,
421 422
                           {framework::GradVarName("Out"),  // dout
                            framework::GradVarName("X")});  // dx
423
DECLARE_INPLACE_OP_INFERER(ActivationDoubleGradOpInplaceInferer,
424
                           {"DDX", "DDOut"});
425 426
DECLARE_INPLACE_OP_INFERER(ActivationTripleGradOpInplaceInferer,
                           {"DDX", "D_DOut"});
427

H
hong 已提交
428 429
template <typename T>
class PowGradOpMaker : public framework::SingleGradOpMaker<T> {
430
 public:
H
hong 已提交
431
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
432 433

 protected:
434
  void Apply(GradOpPtr<T> op) const override {
435
    op->SetType("pow_grad");
H
hong 已提交
436 437
    op->SetInput("X", this->Input("X"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
C
Charles-hit 已提交
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
    op->SetOutput(framework ::GradVarName("X"), this->InputGrad("X"));
    op->SetInput("FactorTensor", this->Input("FactorTensor"));
    op->SetAttrMap(this->Attrs());
  }
};
template <typename T>
class PowDoubleGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("pow_double_grad");
    op->SetInput("X", this->Input("X"));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    op->SetInput("DDX", this->OutputGrad(framework ::GradVarName("X")));
    op->SetOutput("DX", this->InputGrad("X"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
H
hong 已提交
456 457
    op->SetInput("FactorTensor", this->Input("FactorTensor"));
    op->SetAttrMap(this->Attrs());
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
  }
};
class PowOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    ctx->ShareDim("X", /*->*/ "Out");
    ctx->ShareLoD("X", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "X");
  }

  framework::OpKernelType GetKernelTypeForVar(
476
      const std::string& var_name,
477
      const phi::DenseTensor& tensor,
478 479 480 481
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "FactorTensor") {
      return expected_kernel_type;
    }
482 483
    return framework::OpKernelType(
        expected_kernel_type.data_type_, tensor.place(), tensor.layout());
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
  }
};

class PowOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    auto out_grad_name = framework::GradVarName("Out");
    ctx->ShareDim(out_grad_name, framework::GradVarName("X"));
    ctx->ShareLoD(out_grad_name, framework::GradVarName("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, framework::GradVarName("Out"));
  }

  framework::OpKernelType GetKernelTypeForVar(
504
      const std::string& var_name,
505
      const phi::DenseTensor& tensor,
506 507 508 509
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "FactorTensor") {
      return expected_kernel_type;
    }
510 511
    return framework::OpKernelType(
        expected_kernel_type.data_type_, tensor.place(), tensor.layout());
512 513
  }
};
C
Charles-hit 已提交
514 515 516 517 518 519 520 521 522 523 524 525

class PowOpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "X");
  }
};

526
DECLARE_INPLACE_OP_INFERER(ActFwdInplaceInferer, {"X", "Out"});
Q
qijun 已提交
527 528 529 530
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
531
namespace plat = paddle::platform;
532

533 534
#define REGISTER_ACTIVATION_OP(KERNEL_TYPE, OP_NAME, functor, grad_functor) \
  REGISTER_OPERATOR(                                                        \
535 536 537
      KERNEL_TYPE,                                                          \
      ops::ActivationOp,                                                    \
      ops::OP_NAME##OpMaker,                                                \
538
      ops::ActivationOpInferVarType,                                        \
H
hong 已提交
539 540 541 542
      ops::ActivationGradOpMaker<ops::grad_functor<float>::FwdDeps(),       \
                                 paddle::framework::OpDesc>,                \
      ops::ActivationGradOpMaker<ops::grad_functor<float>::FwdDeps(),       \
                                 paddle::imperative::OpBase>,               \
543
      std::conditional<ops::CanInplaceAct<ops::grad_functor<float>>(),      \
544 545 546 547
                       ops::ActFwdInplaceInferer,                           \
                       void>::type);                                        \
  REGISTER_OPERATOR(KERNEL_TYPE##_grad,                                     \
                    ops::ActivationOpGrad,                                  \
548
                    ops::ActivationGradOpInplaceInferer);
549

L
Leo Chen 已提交
550 551 552 553 554 555 556 557 558 559
#define REGISTER_ACTIVATION_CPU_KERNEL(                                     \
    act_type, op_name, functor, grad_functor)                               \
  REGISTER_OP_CPU_KERNEL(                                                   \
      act_type,                                                             \
      ops::ActivationKernel<phi::CPUContext, ops::functor<float>>,          \
      ops::ActivationKernel<phi::CPUContext, ops::functor<double>>);        \
  REGISTER_OP_CPU_KERNEL(                                                   \
      act_type##_grad,                                                      \
      ops::ActivationGradKernel<phi::CPUContext, ops::grad_functor<float>>, \
      ops::ActivationGradKernel<phi::CPUContext, ops::grad_functor<double>>);
560

561 562
FOR_EACH_ACTIVATION_OP(REGISTER_ACTIVATION_OP);
FOR_EACH_ACTIVATION_OP(REGISTER_ACTIVATION_CPU_KERNEL);
563

564
REGISTER_ACTIVATION_OP(brelu, BRelu, BReluFunctor, BReluGradFunctor);
565
REGISTER_ACTIVATION_OP(relu6, Relu6, Relu6Functor, Relu6GradFunctor);
566 567
REGISTER_ACTIVATION_OP(mish, Mish, MishFunctor, MishGradFunctor);
REGISTER_ACTIVATION_OP(stanh, STanh, STanhFunctor, STanhGradFunctor);
568 569 570
REGISTER_ACTIVATION_OP(hard_swish,
                       HardSwish,
                       HardSwishFunctor,
Y
YuanRisheng 已提交
571 572
                       HardSwishGradFunctor);
REGISTER_ACTIVATION_OP(swish, Swish, SwishFunctor, SwishGradFunctor);
573

574
/* ==========================   pow register  ============================ */
C
Charles-hit 已提交
575 576 577
DECLARE_INFER_SHAPE_FUNCTOR(pow_double_grad,
                            PowDoubleGradInferShapeFunctor,
                            PD_INFER_META(phi::GeneralBinaryGradInferMeta));
578 579

REGISTER_OPERATOR(
580 581 582 583
    pow,
    ops::PowOp,
    ops::PowOpMaker,
    ops::ActivationOpInferVarType,
H
hong 已提交
584 585
    ops::PowGradOpMaker<paddle::framework::OpDesc>,
    ops::PowGradOpMaker<paddle::imperative::OpBase>,
586
    std::conditional<ops::CanInplaceAct<ops::PowGradFunctor<float>>(),
587 588 589 590
                     ops::ActFwdInplaceInferer,
                     void>::type);
REGISTER_OPERATOR(pow_grad,
                  ops::PowOpGrad,
C
Charles-hit 已提交
591 592 593 594 595 596 597
                  ops::ActivationGradOpInplaceInferer,
                  ops::PowDoubleGradOpMaker<paddle::framework::OpDesc>,
                  ops::PowDoubleGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(pow_double_grad,
                  ops::PowOpDoubleGrad,
                  ops::ActivationDoubleGradOpInplaceInferer,
                  PowDoubleGradInferShapeFunctor);
598 599
/* ========================================================================== */

600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
/* ==========================  register checkpoint ===========================*/
REGISTER_OP_VERSION(leaky_relu)
    .AddCheckpoint(
        R"ROC(fix leaky_relu, bahavior changed when alpha < 0 or alpha > 1)ROC",
        paddle::framework::compatible::OpVersionDesc()
            .BugfixWithBehaviorChanged(
                "leaky_relu calculate formula before checkponit: out = max(x, "
                "alpha * x); after checkpoint: out = x if x > 0 else alpha * "
                "x"));

REGISTER_OP_VERSION(hard_shrink)
    .AddCheckpoint(
        R"ROC(fix hard_shrink, bahavior changed when threshold<0)ROC",
        paddle::framework::compatible::OpVersionDesc()
            .BugfixWithBehaviorChanged(
                "hard_shrink calculate formula before checkponit: out = x * "
                "((x < -threshold) + (x > threshold)); after checkpoint: out = "
                "x * (((x < -threshold) + (x > threshold)) > 0)"));

619 620
REGISTER_OP_VERSION(softplus).AddCheckpoint(
    R"ROC(add new attributes [beta] and [threshold], and the formula is changed to "
621 622
         " softplus(x) = \\frac{1}{beta} * \\log(1 + e^{beta * x}) \\\\ \\text{For numerical"
         " stability, the implementation reverts to the linear function when: beta * x > threshold.})ROC",
623 624 625 626 627 628 629
    paddle::framework::compatible::OpVersionDesc()
        .NewAttr("beta", "The beta value of the new formula", 1.0f)
        .NewAttr("threshold", "The threshold value of the new formula", 20.0f));

REGISTER_OP_VERSION(mish).AddCheckpoint(
    R"ROC(add new attributes [use_mkldnn], and when computing softplus the formula is changed as the new veriosn of softplus)ROC",
    paddle::framework::compatible::OpVersionDesc().NewAttr(
630 631
        "use_mkldnn",
        "(bool, default false) Only used in mkldnn kernel",
632
        false));
633

634
/* ========================================================================== */