activation_op.cc 43.6 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Q
qijun 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Q
qijun 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Q
qijun 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/activation_op.h"
16

T
tink2123 已提交
17
#include <memory>
D
dzhwinter 已提交
18
#include <string>
19
#include <type_traits>
T
tink2123 已提交
20
#include <unordered_map>
21
#include <vector>
22 23

#include "paddle/fluid/operators/common_infer_shape_functions.h"
24
#include "paddle/fluid/operators/mkldnn/mkldnn_activation_op.h"
D
dzhwinter 已提交
25
#include "paddle/fluid/platform/port.h"
26 27 28
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
Q
qijun 已提交
29

A
Adam 已提交
30 31
DECLARE_bool(use_mkldnn);

Q
qijun 已提交
32 33 34
namespace paddle {
namespace operators {

35 36
using paddle::framework::Tensor;

37 38 39 40 41
template <typename GradFunctor>
static constexpr bool CanInplaceAct() {
  return GradFunctor::FwdDeps() == kDepOut || GradFunctor::FwdDeps() == kNoDeps;
}

42 43 44 45 46
#define REGISTER_ACTIVATION_OP_MAKER(OP_NAME, OP_COMMENT)                    \
  class OP_NAME##OpMaker                                                     \
      : public ::paddle::framework::OpProtoAndCheckerMaker {                 \
   public:                                                                   \
    void Make() override {                                                   \
47 48 49 50 51
      AddInput("X", "Input of " #OP_NAME                                     \
                    " operator, an N-D Tensor, with data type float32, "     \
                    "float64 or float16.");                                  \
      AddOutput("Out", "Output of " #OP_NAME                                 \
                       " operator, a Tensor with shape same as input.");     \
52 53 54 55 56 57 58 59 60
      AddAttr<bool>("use_mkldnn",                                            \
                    "(bool, default false) Only used in mkldnn kernel")      \
          .SetDefault(false);                                                \
      AddAttr<bool>("use_cudnn",                                             \
                    "(bool, default false) Only used in cudnn kernel, need " \
                    "install cudnn")                                         \
          .SetDefault(false);                                                \
      AddComment(OP_COMMENT);                                                \
    }                                                                        \
D
dzhwinter 已提交
61
  }
D
dzhwinter 已提交
62

H
hong 已提交
63 64
template <ActBwdOpFwdDeps kDepValue, typename T>
class ActivationGradOpMaker : public framework::SingleGradOpMaker<T> {
65
 public:
H
hong 已提交
66
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
67 68

 protected:
69
  void Apply(GradOpPtr<T> op) const override {
H
hong 已提交
70 71 72 73
    op->SetType(this->ForwardOpType() + "_grad");
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
74

A
Adam 已提交
75 76
    if ((static_cast<int>(kDepValue) &
         static_cast<int>(ActBwdOpFwdDeps::kDepX)) ||
77 78 79
        FLAGS_use_mkldnn ||
        (op->HasAttr("use_mkldnn") &&
         BOOST_GET_CONST(bool, op->GetAttr("use_mkldnn")))) {
H
hong 已提交
80
      op->SetInput("X", this->Input("X"));
81 82 83 84
    }

    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepOut)) {
H
hong 已提交
85
      op->SetInput("Out", this->Output("Out"));
86
    }
D
dzhwinter 已提交
87
  }
88
};
D
dzhwinter 已提交
89

90 91 92 93
framework::OpKernelType GetKernelType(const framework::ExecutionContext& ctx,
                                      const framework::OperatorWithKernel& oper,
                                      const std::string& name) {
  framework::LibraryType library{framework::LibraryType::kPlain};
M
mozga-intel 已提交
94
  framework::DataLayout layout = framework::DataLayout::kAnyLayout;
95 96 97 98 99 100 101 102 103 104
// FIXME(liuwei1031) temporarily disable the code to unblock users
// TODO(liuwei1031) figure out the reason behind
// https://github.com/PaddlePaddle/Paddle/issues/16096
// and re-enable this in the future
// #ifdef PADDLE_WITH_CUDA
//   auto it1 = oper.Attrs().find("use_cudnn");
//   if (it1 != oper.Attrs().end() && platform::CanCUDNNBeUsed(ctx)) {
//     library = framework::LibraryType::kCUDNN;
//   }
// #endif
105 106 107 108 109
#ifdef PADDLE_WITH_MKLDNN
  auto it = oper.Attrs().find("use_mkldnn");
  if (library == framework::LibraryType::kPlain && it != oper.Attrs().end() &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
110
    layout = framework::DataLayout::kMKLDNN;
111 112
  }
#endif
113 114
  return framework::OpKernelType(oper.IndicateVarDataType(ctx, name),
                                 ctx.GetPlace(), layout, library);
115 116
}

Q
qijun 已提交
117 118 119 120
class ActivationOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

121
  void InferShape(framework::InferShapeContext* ctx) const override {
122
    ctx->ShareDim("X", /*->*/ "Out");
F
fengjiayi 已提交
123
    ctx->ShareLoD("X", /*->*/ "Out");
Q
qijun 已提交
124
  }
125

126
 protected:
127 128 129 130
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "X");
  }
Q
qijun 已提交
131 132
};

C
chengduo 已提交
133 134 135
class ActivationOpInferVarType
    : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
136
  std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
C
chengduo 已提交
137
      const override {
138 139
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
140 141 142
  }
};

Q
qijun 已提交
143 144 145 146
class ActivationOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

147
  void InferShape(framework::InferShapeContext* ctx) const override {
148 149 150
    auto out_grad_name = framework::GradVarName("Out");
    ctx->ShareDim(out_grad_name, framework::GradVarName("X"));
    ctx->ShareLoD(out_grad_name, framework::GradVarName("X"));
Q
qijun 已提交
151
  }
152

153
 protected:
154 155
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
156
    return GetKernelType(ctx, *this, framework::GradVarName("Out"));
157
  }
Q
qijun 已提交
158 159
};

D
dzhwinter 已提交
160
UNUSED constexpr char SigmoidDoc[] = R"DOC(
161
Sigmoid Activation Operator
K
Kexin Zhao 已提交
162

163
$$out = \\frac{1}{1 + e^{-x}}$$
K
Kexin Zhao 已提交
164

D
dzhwinter 已提交
165
)DOC";
Q
qijun 已提交
166

D
dzhwinter 已提交
167
UNUSED constexpr char LogSigmoidDoc[] = R"DOC(
168
Logsigmoid Activation Operator
K
Kexin Zhao 已提交
169

170
$$out = \\log \\frac{1}{1 + e^{-x}}$$
K
Kexin Zhao 已提交
171

D
dzhwinter 已提交
172
)DOC";
173

D
dzhwinter 已提交
174
UNUSED constexpr char ExpDoc[] = R"DOC(
175
Exp Operator. Computes exp of x element-wise with a natural number :math:`e` as the base.
K
Kexin Zhao 已提交
176

177
$$out = e^x$$
K
Kexin Zhao 已提交
178

D
dzhwinter 已提交
179
)DOC";
Q
qijun 已提交
180

D
dzhwinter 已提交
181
UNUSED constexpr char ReluDoc[] = R"DOC(
K
kexinzhao 已提交
182
Relu Activation Operator.
K
Kexin Zhao 已提交
183

184
$$out = \max(x, 0)$$
K
Kexin Zhao 已提交
185

D
dzhwinter 已提交
186
)DOC";
K
Kexin Zhao 已提交
187

D
dzhwinter 已提交
188
UNUSED constexpr char TanhDoc[] = R"DOC(
K
kexinzhao 已提交
189
Tanh Activation Operator.
K
Kexin Zhao 已提交
190

Q
update  
qiaolongfei 已提交
191
$$out = \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
K
Kexin Zhao 已提交
192

D
dzhwinter 已提交
193
)DOC";
194

D
dzhwinter 已提交
195
UNUSED constexpr char TanhShrinkDoc[] = R"DOC(
K
kexinzhao 已提交
196
TanhShrink Activation Operator.
K
Kexin Zhao 已提交
197

Y
Yan Chunwei 已提交
198
$$out = x - \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
K
Kexin Zhao 已提交
199

D
dzhwinter 已提交
200
)DOC";
K
Kexin Zhao 已提交
201

D
dzhwinter 已提交
202
UNUSED constexpr char SqrtDoc[] = R"DOC(
K
kexinzhao 已提交
203
Sqrt Activation Operator.
K
Kexin Zhao 已提交
204

205
.. math:: out=\\sqrt{x}=x^{1/2}
206

207 208
**Note**:
  input value must be greater than or equal to zero.
K
Kexin Zhao 已提交
209

D
dzhwinter 已提交
210
)DOC";
211

Z
zhoukunsheng 已提交
212 213 214 215 216
UNUSED constexpr char RsqrtDoc[] = R"DOC(
Rsqrt Activation Operator.

Please make sure input is legal in case of numeric errors.

217
$$out = \\frac{1}{\\sqrt{x}}$$
Z
zhoukunsheng 已提交
218 219 220

)DOC";

D
dzhwinter 已提交
221
UNUSED constexpr char AbsDoc[] = R"DOC(
Y
Yang Zhang 已提交
222
Abs Operator.
K
Kexin Zhao 已提交
223

224
$$out = |x|$$
K
Kexin Zhao 已提交
225

D
dzhwinter 已提交
226
)DOC";
227

D
dzhwinter 已提交
228
UNUSED constexpr char CeilDoc[] = R"DOC(
229
Ceil Operator. Computes ceil of x element-wise.
D
dzhwinter 已提交
230

231
$$out = \\left \\lceil x \\right \\rceil$$
D
dzhwinter 已提交
232

D
dzhwinter 已提交
233
)DOC";
D
dzhwinter 已提交
234

D
dzhwinter 已提交
235
UNUSED constexpr char FloorDoc[] = R"DOC(
236
Floor Activation Operator. Computes floor of x element-wise.
D
dzhwinter 已提交
237

238
$$out = \\left \\lfloor x \\right \\rfloor$$
D
dzhwinter 已提交
239

D
dzhwinter 已提交
240
)DOC";
D
dzhwinter 已提交
241

D
dzhwinter 已提交
242
UNUSED constexpr char CosDoc[] = R"DOC(
243
Cosine Operator. Computes cosine of x element-wise.
C
add cos  
chengduoZH 已提交
244

Y
Yang Zhang 已提交
245 246 247
Input range is `(-inf, inf)` and output range is `[-1,1]`.
Return `nan` if input is out of boundary.

248
$$out = cos(x)$$
C
add cos  
chengduoZH 已提交
249

D
dzhwinter 已提交
250
)DOC";
C
add cos  
chengduoZH 已提交
251

D
dzhwinter 已提交
252
UNUSED constexpr char SinDoc[] = R"DOC(
C
add sin  
chengduoZH 已提交
253 254
Sine Activation Operator.

255
$$out = sin(x)$$
C
add sin  
chengduoZH 已提交
256

D
dzhwinter 已提交
257
)DOC";
C
add sin  
chengduoZH 已提交
258

259 260 261 262 263 264 265 266 267 268 269 270 271 272
UNUSED constexpr char SinhDoc[] = R"DOC(
Sinh Activation Operator.

$$out = sinh(x)$$

)DOC";

UNUSED constexpr char CoshDoc[] = R"DOC(
Cosh Activation Operator.

$$out = cosh(x)$$

)DOC";

D
dzhwinter 已提交
273
UNUSED constexpr char RoundDoc[] = R"DOC(
274
The OP rounds the values in the input to the nearest integer value.
D
dzhwinter 已提交
275

276 277 278 279 280 281 282 283 284
.. code-block:: python

  input:
    x.shape = [4]
    x.data = [1.2, -0.9, 3.4, 0.9]

  output:
    out.shape = [4]
    out.data = [1., -1., 3., 1.]
D
dzhwinter 已提交
285

D
dzhwinter 已提交
286
)DOC";
D
dzhwinter 已提交
287

D
dzhwinter 已提交
288
UNUSED constexpr char ReciprocalDoc[] = R"DOC(
K
kexinzhao 已提交
289
Reciprocal Activation Operator.
K
Kexin Zhao 已提交
290

291
$$out = \\frac{1}{x}$$
K
Kexin Zhao 已提交
292

D
dzhwinter 已提交
293
)DOC";
294

D
dzhwinter 已提交
295
UNUSED constexpr char LogDoc[] = R"DOC(
K
kexinzhao 已提交
296
Log Activation Operator.
K
Kexin Zhao 已提交
297

298
$$out = \ln(x)$$
K
Kexin Zhao 已提交
299 300 301

Natural logarithm of x.

D
dzhwinter 已提交
302 303
)DOC";

304 305 306 307 308 309 310 311 312
UNUSED constexpr char Log1pDoc[] = R"DOC(
Log Activation Operator.

$out = \ln(x+1)$

Natural logarithm of x.

)DOC";

D
dzhwinter 已提交
313
UNUSED constexpr char SquareDoc[] = R"DOC(
314
The OP square each elements of the inputs.
D
dzhwinter 已提交
315

316
$$out = x^2$$
317

D
dzhwinter 已提交
318 319
)DOC";

D
dzhwinter 已提交
320
UNUSED constexpr char SoftsignDoc[] = R"DOC(
D
dzhwinter 已提交
321 322
Softsign Activation Operator.

323
$$out = \\frac{x}{1 + \|x\|}$$
D
dzhwinter 已提交
324 325 326

)DOC";

T
tink2123 已提交
327 328 329 330 331 332
class AcosOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of acos operator");
    AddOutput("Out", "Output of acos operator");
    AddComment(R"DOC(
333
Arccosine Operator.
334

T
tink2123 已提交
335
$$out = \cos^{-1}(x)$$
336

T
tink2123 已提交
337 338 339
)DOC");
  }
};
340

T
tink2123 已提交
341 342 343 344 345 346
class AsinOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of asin operator");
    AddOutput("Out", "Output of asin operator");
    AddComment(R"DOC(
347
Arcsine Operator.
348

T
tink2123 已提交
349
$$out = \sin^{-1}(x)$$
350

T
tink2123 已提交
351 352 353
)DOC");
  }
};
354

T
tink2123 已提交
355 356 357 358 359 360
class AtanOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of atan operator");
    AddOutput("Out", "Output of atan operator");
    AddComment(R"DOC(
361
Arctangent Operator.
362

363
$$out = \tan^{-1}(x)$$
364

T
tink2123 已提交
365 366 367
)DOC");
  }
};
368

D
dzhwinter 已提交
369
class LeakyReluOpMaker : public framework::OpProtoAndCheckerMaker {
370
 public:
Y
Yu Yang 已提交
371
  void Make() override {
W
Wilber 已提交
372 373 374 375 376 377 378 379
    AddInput("X",
             "A LoDTensor or Tensor representing preactivation values. Must be "
             "one of the following types: float32, float64.");
    AddOutput(
        "Out",
        "A LoDTensor or Tensor with the same type and size as that of x.");
    AddAttr<float>("alpha", "Slope of the activation function at x < 0.")
        .SetDefault(0.02f);
A
Adam 已提交
380 381 382
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
K
Kexin Zhao 已提交
383
    AddComment(R"DOC(
D
dzhwinter 已提交
384
LeakyRelu Activation Operator.
K
Kexin Zhao 已提交
385

W
Wilber 已提交
386
$$out = \max(x, \alpha * x)$$
K
Kexin Zhao 已提交
387 388

)DOC");
389 390 391
  }
};

392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
class SoftplusOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "Input of Softplus operator, an N-D Tensor, with data type "
             "float32, float64 or float16.");
    AddOutput(
        "Out",
        "Output of Softplus operator, a Tensor with shape same as input.");
    AddAttr<float>("beta", "The value of beta for Softplus.").SetDefault(1.0f);
    AddAttr<float>("threshold", "The value of threshold for Softplus.")
        .SetDefault(20.0f);
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel.")
        .SetDefault(false);
    AddAttr<bool>(
        "use_cudnn",
        "(bool, default false) Only used in cudnn kernel, need install cudnn.")
        .SetDefault(false);
    AddComment(R"DOC(
:strong:`Softplus Activation Operator`

..  math::
    out = \frac{1}{\beta} * \log(1 + \exp(\beta * x)) \\
    \text{For numerical stability, the implementation reverts to the linear function when :}\,x \times \beta > threshold.

)DOC");
  }
};

D
dzhwinter 已提交
422
class SoftShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
K
kexinzhao 已提交
423
 public:
Y
Yu Yang 已提交
424
  void Make() override {
D
dzhwinter 已提交
425 426 427
    AddInput("X", "Input of Softshrink operator");
    AddOutput("Out", "Output of Softshrink operator");
    AddAttr<float>("lambda", "non-negative offset").SetDefault(0.5f);
K
Kexin Zhao 已提交
428
    AddComment(R"DOC(
429 430 431
:strong:`Softshrink Activation Operator`

..  math::
432
    out = \begin{cases}
433 434 435 436
         x - \lambda, \text{if } x > \lambda \\
         x + \lambda, \text{if } x < -\lambda \\
         0,  \text{otherwise}
         \end{cases}
K
Kexin Zhao 已提交
437 438

)DOC");
K
kexinzhao 已提交
439 440 441
  }
};

D
dzhwinter 已提交
442
class HardShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
443
 public:
Y
Yu Yang 已提交
444
  void Make() override {
D
dzhwinter 已提交
445 446
    AddInput("X", "Input of HardShrink operator");
    AddOutput("Out", "Output of HardShrink operator");
Y
yuyang18 已提交
447 448
    AddAttr<float>("threshold",
                   "The value of threshold for HardShrink. [default: 0.5]")
D
dzhwinter 已提交
449
        .SetDefault(0.5f);
K
Kexin Zhao 已提交
450
    AddComment(R"DOC(
Y
yuyang18 已提交
451
:strong:`HardShrink activation operator`
K
Kexin Zhao 已提交
452

Y
yuyang18 已提交
453 454 455 456 457 458
..  math::
    out = \begin{cases}
            x, \text{if } x > \lambda \\
            x, \text{if } x < -\lambda \\
            0,  \text{otherwise}
          \end{cases}
K
Kexin Zhao 已提交
459 460

)DOC");
461 462 463
  }
};

464 465
class BReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
466
  void Make() override {
467 468 469 470 471 472
    AddInput("X",
             "The input is a multi-dimensional Tensor. The data type is "
             "float32, float64.");
    AddOutput("Out",
              "The output is a multi-dimensional Tensor which has same "
              "dimension and data type as the ``X``.");
473 474 475 476
    AddAttr<float>("t_min", "The min marginal value of BRelu")
        .SetDefault(static_cast<float>(0));
    AddAttr<float>("t_max", "The max marginal value of BRelu")
        .SetDefault(static_cast<float>(24));
K
Kexin Zhao 已提交
477
    AddComment(R"DOC(
K
kexinzhao 已提交
478
BRelu Activation Operator.
K
Kexin Zhao 已提交
479

480
$$out = \min(\max(x, t_{min}), t_{max})$$
K
Kexin Zhao 已提交
481 482

)DOC");
483 484 485 486 487
  }
};

class SoftReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
488
  void Make() override {
489
    AddInput("X", "Input of SoftRelu operator");
F
fengjiayi 已提交
490
    AddOutput("Out", "Output of SoftRelu operator");
491 492
    AddAttr<float>("threshold", "The threshold value of SoftRelu")
        .SetDefault(40.0f);
K
Kexin Zhao 已提交
493
    AddComment(R"DOC(
K
kexinzhao 已提交
494
SoftRelu Activation Operator.
K
Kexin Zhao 已提交
495

496
$$out = \ln(1 + \exp(\max(\min(x, threshold), -threshold)))$$
K
Kexin Zhao 已提交
497 498

)DOC");
499 500 501
  }
};

502 503
class ELUOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
504
  void Make() override {
505 506 507 508 509 510
    AddInput("X",
             "The input is a multi-dimensional Tensor. The data type is "
             "float32 or float64.");
    AddOutput("Out",
              "The output is a multi-dimensional Tensor which has same "
              "dimension and data type as the ``x``.");
511
    AddAttr<float>("alpha", "The alpha value of ELU").SetDefault(1.0f);
512
    AddComment(R"DOC(
K
kexinzhao 已提交
513
ELU Activation Operator.
K
Kexin Zhao 已提交
514 515 516 517

Applies the following element-wise computation on the input according to
https://arxiv.org/abs/1511.07289.

518
$$out = \max(0, x) + \min(0, \alpha * (e^x - 1))$$
K
Kexin Zhao 已提交
519 520

)DOC");
521 522 523
  }
};

524 525
class Relu6OpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
526
  void Make() override {
Z
zhupengyang 已提交
527 528 529 530 531 532 533 534
    AddInput("X",
             "Input of relu6 operator, an N-D Tensor, "
             "with data type float32, float64.");
    AddOutput(
        "Out",
        "Output of relu6 operator, a Tensor with the same shape as input.");
    AddAttr<float>("threshold",
                   "The threshold value of Relu6. Default is 6.0. ")
535
        .SetDefault(6.0f);
A
Adam 已提交
536 537 538
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
K
Kexin Zhao 已提交
539
    AddComment(R"DOC(
K
kexinzhao 已提交
540
Relu6 Activation Operator.
K
Kexin Zhao 已提交
541

542
$$out = \min(\max(0, x), threshold)$$
K
Kexin Zhao 已提交
543 544

)DOC");
545 546 547
  }
};

548 549
class PowOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
550
  void Make() override {
551
    AddInput("X", "Input of Pow operator");
552 553 554 555 556
    AddInput("FactorTensor",
             "(Tensor<float>, optional). If provided, pow will use this"
             "The shape of FactorTensor MUST BE [1]."
             "it has higher priority than attr(factor).")
        .AsDispensable();
F
fengjiayi 已提交
557
    AddOutput("Out", "Output of Pow operator");
558
    AddAttr<float>("factor", "The exponential factor of Pow").SetDefault(1.0f);
K
Kexin Zhao 已提交
559
    AddComment(R"DOC(
K
kexinzhao 已提交
560
Pow Activation Operator.
K
Kexin Zhao 已提交
561

562
$$out = x^{factor}$$
K
Kexin Zhao 已提交
563 564

)DOC");
565 566 567 568 569
  }
};

class STanhOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
570
  void Make() override {
571 572 573 574 575 576
    AddInput("X",
             "Input of STanh operator."
             " A LoDTensor or Tensor with type float32, float64.");
    AddOutput("Out", "Output of STanh operator. A Tensor with type float32.");
    AddAttr<float>("scale_a", "The scale parameter of a for the input. ")
        .SetDefault(0.67f);
577 578
    AddAttr<float>("scale_b", "The scale parameter of b for the input")
        .SetDefault(1.7159f);
K
Kexin Zhao 已提交
579
    AddComment(R"DOC(
K
kexinzhao 已提交
580
STanh Activation Operator.
K
Kexin Zhao 已提交
581

Y
Yan Chunwei 已提交
582
$$out = b * \\frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}$$
K
Kexin Zhao 已提交
583 584

)DOC");
Q
qijun 已提交
585 586 587
  }
};

588 589
class ThresholdedReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
590
  void Make() override {
591
    AddInput("X", "Input of ThresholdedRelu operator");
F
fengjiayi 已提交
592
    AddOutput("Out", "Output of ThresholdedRelu operator");
Y
yuyang18 已提交
593 594
    AddAttr<float>("threshold",
                   "The threshold location of activation. [default 1.0].")
595
        .SetDefault(1.0f);
K
Kexin Zhao 已提交
596
    AddComment(R"DOC(
Y
yuyang18 已提交
597
:strong:`ThresholdedRelu activation operator`
K
Kexin Zhao 已提交
598

Y
yuyang18 已提交
599
..  math::
K
Kexin Zhao 已提交
600

Y
yuyang18 已提交
601
    out = \begin{cases}
Y
yuyang18 已提交
602
             x,  \text{if } x > threshold \\
Y
yuyang18 已提交
603 604
             0,  \text{otherwise}
          \end{cases}
K
Kexin Zhao 已提交
605
)DOC");
606 607 608
  }
};

609 610
class HardSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
611
  void Make() override {
612 613 614 615 616
    AddInput("X", "An N-D Tensor with data type float32, float64. ");
    AddOutput("Out", "A Tensor with the same shape as input. ");
    AddAttr<float>("slope",
                   "The slope of the linear approximation of sigmoid. Its "
                   "value MUST BE positive. Default is 0.2. ")
617
        .SetDefault(0.2f);
618 619 620
    AddAttr<float>(
        "offset",
        "The offset of the linear approximation of sigmoid. Default is 0.5. ")
621
        .SetDefault(0.5f);
622
    AddComment(R"DOC(
K
kexinzhao 已提交
623
HardSigmoid Activation Operator.
624

625
A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
K
Kexin Zhao 已提交
626
which is much faster than sigmoid.
627

628
$$out = \max(0, \min(1, slope * x + offset))$$
629

K
Kexin Zhao 已提交
630
)DOC");
631 632 633
  }
};

A
Abhinav Arora 已提交
634 635
class SwishOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
636
  void Make() override {
A
Abhinav Arora 已提交
637
    AddInput("X", "Input of Swish operator");
F
fengjiayi 已提交
638
    AddOutput("Out", "Output of Swish operator");
A
Abhinav Arora 已提交
639
    AddAttr<float>("beta", "Constant beta of swish operator").SetDefault(1.0f);
640 641 642
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
A
Abhinav Arora 已提交
643 644 645
    AddComment(R"DOC(
Swish Activation Operator.

646
$$out = \\frac{x}{1 + e^{- \beta \ x}}$$
A
Abhinav Arora 已提交
647 648 649 650 651

)DOC");
  }
};

H
huangjun12 已提交
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
class HardSwishOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of HardSwish operator");
    AddOutput("Out", "Output of HardSwish operator");
    AddAttr<float>("threshold", "The threshold parameter of HardSwish operator")
        .SetDefault(6.0f);
    AddAttr<float>("scale", "The scale parameter of HardSwish operator")
        .SetDefault(6.0f);
    AddAttr<float>("offset", "The offset parameter of HardSwish operator")
        .SetDefault(3.0f);
    AddComment(R"DOC(
HardSwish Activation Operator.

The hard version of swish(https://arxiv.org/pdf/1905.02244.pdf).

668
$$out = \frac{x * (min(max(0, x+offset), threshold))}{scale}$$
H
huangjun12 已提交
669 670 671 672 673 674 675 676 677

The threshold and scale should be positive. The offset can be either positive or negative.
The default parameters are set according to the above reference.
It is recommended to use the defaults for this activation.

)DOC");
  }
};

D
dzhwinter 已提交
678 679 680 681 682 683 684
REGISTER_ACTIVATION_OP_MAKER(Sigmoid, SigmoidDoc);
REGISTER_ACTIVATION_OP_MAKER(LogSigmoid, LogSigmoidDoc);
REGISTER_ACTIVATION_OP_MAKER(Exp, ExpDoc);
REGISTER_ACTIVATION_OP_MAKER(Relu, ReluDoc);
REGISTER_ACTIVATION_OP_MAKER(Tanh, TanhDoc);
REGISTER_ACTIVATION_OP_MAKER(TanhShrink, TanhShrinkDoc);
REGISTER_ACTIVATION_OP_MAKER(Sqrt, SqrtDoc);
Z
zhoukunsheng 已提交
685
REGISTER_ACTIVATION_OP_MAKER(Rsqrt, RsqrtDoc);
D
dzhwinter 已提交
686 687 688 689 690
REGISTER_ACTIVATION_OP_MAKER(Abs, AbsDoc);
REGISTER_ACTIVATION_OP_MAKER(Ceil, CeilDoc);
REGISTER_ACTIVATION_OP_MAKER(Floor, FloorDoc);
REGISTER_ACTIVATION_OP_MAKER(Cos, CosDoc);
REGISTER_ACTIVATION_OP_MAKER(Sin, SinDoc);
691 692
REGISTER_ACTIVATION_OP_MAKER(Sinh, SinhDoc);
REGISTER_ACTIVATION_OP_MAKER(Cosh, CoshDoc);
D
dzhwinter 已提交
693 694 695
REGISTER_ACTIVATION_OP_MAKER(Round, RoundDoc);
REGISTER_ACTIVATION_OP_MAKER(Reciprocal, ReciprocalDoc);
REGISTER_ACTIVATION_OP_MAKER(Log, LogDoc);
696
REGISTER_ACTIVATION_OP_MAKER(Log1p, Log1pDoc);
D
dzhwinter 已提交
697 698 699
REGISTER_ACTIVATION_OP_MAKER(Square, SquareDoc);
REGISTER_ACTIVATION_OP_MAKER(Softsign, SoftsignDoc);

700
template <ActBwdOpFwdDeps kDepValue>
701 702 703 704 705
class ActivationOpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
706
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepX)) {
707
      if (ctx->HasOutput("DX")) {
708 709 710
        ctx->ShareDim("X", "DX");
        ctx->ShareLoD("X", "DX");
      }
711
      if (ctx->HasOutput("DDOut")) {
712 713 714
        ctx->ShareDim("X", "DDOut");
        ctx->ShareLoD("X", "DDOut");
      }
715
    }
716
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepOut)) {
717
      if (ctx->HasOutput("DOut")) {
718 719 720
        ctx->ShareDim("Out", "DOut");
        ctx->ShareLoD("Out", "DOut");
      }
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
      if (ctx->HasOutput("DDOut")) {
        ctx->ShareDim("Out", "DDOut");
        ctx->ShareLoD("Out", "DDOut");
      }
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "DDX");
  }
};

template <ActBwdOpFwdDeps kDepValue>
class ActivationOpDoubleGrad2 : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepX)) {
      if (ctx->HasOutput("DDOut")) {
        ctx->ShareDim("X", "DDOut");
        ctx->ShareLoD("X", "DDOut");
      }
    }
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepOut)) {
      if (ctx->HasOutput("DDOut")) {
749 750 751
        ctx->ShareDim("Out", "DDOut");
        ctx->ShareLoD("Out", "DDOut");
      }
752 753 754 755 756 757 758 759 760 761
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "DDX");
  }
};

762 763 764 765
//
// ReluGrad: dx = dy if y >= 0 else 0
// ReluGradGrad: ddy = ddx if y >= 0 else 0
//
H
hong 已提交
766 767
template <typename T>
class ReluDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
768
 public:
H
hong 已提交
769
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
770 771

 protected:
772
  void Apply(GradOpPtr<T> op) const override {
773 774
    op->SetType("relu_grad_grad");
    // input1: Out
H
hong 已提交
775
    op->SetInput("Out", this->Input("Out"));
Q
qingqing01 已提交
776
    // input2: ddx
H
hong 已提交
777 778
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
779
    // output: ddy
H
hong 已提交
780
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
781 782 783
  }
};

784 785
// leaky_relu Grad: dx=dy if x>=0 else alpha * dy
// leaky_relu GradGrad: ddy=ddx if x>=0 else alpha * ddx
H
hong 已提交
786
template <typename T>
787
class LeakyReluDoubleGradMaker
H
hong 已提交
788
    : public ::paddle::framework::SingleGradOpMaker<T> {
789
 public:
H
hong 已提交
790
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
791 792

 protected:
793
  void Apply(GradOpPtr<T> op) const override {
794
    op->SetType("leaky_relu_grad_grad");
795 796
    // input1: X
    op->SetInput("X", this->Input("X"));
797
    // X@GRAD@GRAD: ddx
H
hong 已提交
798 799
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
800
    // Out@GRAD@GRAD: ddy
H
hong 已提交
801
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
802 803 804
  }
};

D
Double_V 已提交
805 806 807 808 809 810 811 812
// elu grad: dx=dy if y>0 else alpha*dy*x.exp()
// elu gradgrad: ddx=ddy if y>0 else alpha*ddy*x.exp()
template <typename T>
class ELUDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
813
  void Apply(GradOpPtr<T> op) const override {
D
Double_V 已提交
814 815 816 817 818 819 820 821 822 823 824 825 826 827
    op->SetType("elu_grad_grad");

    op->SetInput("X", this->Input("X"));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    // X@GRAD@GRAD: ddx
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());

    // Out@GRAD@GRAD: ddy
    op->SetOutput("DX", this->InputGrad("X"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

L
lvmengsi 已提交
828 829
// sqrt Grad: dx = 0.5 * dy / y
// sqrt GradGrad: ddy = 0.5 * ddx / y, dy = -1 * dx * ddx
H
hong 已提交
830 831
template <typename T>
class SqrtDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
L
lvmengsi 已提交
832
 public:
H
hong 已提交
833
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
L
lvmengsi 已提交
834 835

 protected:
836
  void Apply(GradOpPtr<T> op) const override {
L
lvmengsi 已提交
837
    op->SetType("sqrt_grad_grad");
H
hong 已提交
838 839 840 841 842 843
    op->SetInput("Out", this->Input("Out"));
    op->SetInput("DX", this->Output(framework::GradVarName("X")));
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
    op->SetOutput("DOut", this->InputGrad("Out"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
L
lvmengsi 已提交
844 845 846
  }
};

847 848
// square Grad: dx=2x*dy
// square GradGrad: ddy=2x*ddx, dx=2dy*ddx
H
hong 已提交
849 850
template <typename T>
class SquareDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
851
 public:
H
hong 已提交
852
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
853 854

 protected:
855
  void Apply(GradOpPtr<T> op) const override {
856
    op->SetType("square_grad_grad");
H
hong 已提交
857
    op->SetInput("X", this->Input("X"));
858
    // Out@GRAD: dy
H
hong 已提交
859
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
860
    // X@GRAD@GRAD: ddx
H
hong 已提交
861
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
862

H
hong 已提交
863
    op->SetAttrMap(this->Attrs());
864 865

    // X@GRAD: dx
H
hong 已提交
866
    op->SetOutput("DX", this->InputGrad("X"));
867
    // Out@GRAD@GRAD: ddy
H
hong 已提交
868
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
869 870 871
  }
};

872
DECLARE_INPLACE_OP_INFERER(ActivationGradOpInplaceInferer,
873 874
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});
875
DECLARE_INPLACE_OP_INFERER(ActivationDoubleGradOpInplaceInferer,
876
                           {"DDX", "DDOut"});
877

H
hong 已提交
878 879
template <typename T>
class PowGradOpMaker : public framework::SingleGradOpMaker<T> {
880
 public:
H
hong 已提交
881
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
882 883

 protected:
884
  void Apply(GradOpPtr<T> op) const override {
885
    op->SetType("pow_grad");
H
hong 已提交
886 887 888 889 890
    op->SetInput("X", this->Input("X"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetInput("FactorTensor", this->Input("FactorTensor"));
    op->SetAttrMap(this->Attrs());
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
  }
};
class PowOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    ctx->ShareDim("X", /*->*/ "Out");
    ctx->ShareLoD("X", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "X");
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "FactorTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
};

class PowOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    auto out_grad_name = framework::GradVarName("Out");
    ctx->ShareDim(out_grad_name, framework::GradVarName("X"));
    ctx->ShareLoD(out_grad_name, framework::GradVarName("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, framework::GradVarName("Out"));
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "FactorTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
};
945
DECLARE_INPLACE_OP_INFERER(ActFwdInplaceInferer, {"X", "Out"});
Q
qijun 已提交
946 947 948 949
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
950
namespace plat = paddle::platform;
951

952 953 954 955
#define REGISTER_ACTIVATION_OP(KERNEL_TYPE, OP_NAME, functor, grad_functor) \
  REGISTER_OPERATOR(                                                        \
      KERNEL_TYPE, ops::ActivationOp, ops::OP_NAME##OpMaker,                \
      ops::ActivationOpInferVarType,                                        \
H
hong 已提交
956 957 958 959
      ops::ActivationGradOpMaker<ops::grad_functor<float>::FwdDeps(),       \
                                 paddle::framework::OpDesc>,                \
      ops::ActivationGradOpMaker<ops::grad_functor<float>::FwdDeps(),       \
                                 paddle::imperative::OpBase>,               \
960
      std::conditional<ops::CanInplaceAct<ops::grad_functor<float>>(),      \
961
                       ops::ActFwdInplaceInferer, void>::type);             \
962
  REGISTER_OPERATOR(KERNEL_TYPE##_grad, ops::ActivationOpGrad,              \
963
                    ops::ActivationGradOpInplaceInferer);
964 965 966

#define REGISTER_ACTIVATION_CPU_KERNEL(act_type, op_name, functor,        \
                                       grad_functor)                      \
Q
QI JUN 已提交
967 968 969 970 971 972 973 974 975 976
  REGISTER_OP_CPU_KERNEL(                                                 \
      act_type, ops::ActivationKernel<paddle::platform::CPUDeviceContext, \
                                      ops::functor<float>>,               \
      ops::ActivationKernel<paddle::platform::CPUDeviceContext,           \
                            ops::functor<double>>);                       \
  REGISTER_OP_CPU_KERNEL(                                                 \
      act_type##_grad,                                                    \
      ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,       \
                                ops::grad_functor<float>>,                \
      ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,       \
Y
Yu Yang 已提交
977
                                ops::grad_functor<double>>);
978

979 980
FOR_EACH_ACTIVATION_OP(REGISTER_ACTIVATION_OP);
FOR_EACH_ACTIVATION_OP(REGISTER_ACTIVATION_CPU_KERNEL);
981

982
/* ==========================    relu register  ============================= */
983 984
REGISTER_OPERATOR(
    relu, ops::ActivationOp, ops::ReluOpMaker, ops::ActivationOpInferVarType,
H
hong 已提交
985 986 987 988
    ops::ActivationGradOpMaker<ops::ReluGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::ReluGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
989
    ops::ActFwdInplaceInferer);
990
REGISTER_OPERATOR(relu_grad, ops::ActivationOpGrad,
991
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
992 993
                  ops::ReluDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::ReluDoubleGradMaker<paddle::imperative::OpBase>);
994 995
REGISTER_OPERATOR(
    relu_grad_grad,
996
    ops::ActivationOpDoubleGrad2<ops::ReluGradFunctor<float>::FwdDeps()>,
997
    ops::ActivationDoubleGradOpInplaceInferer);
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008

REGISTER_ACTIVATION_CPU_KERNEL(relu, Relu, ReluFunctor, ReluGradFunctor);

REGISTER_OP_CPU_KERNEL(
    relu_grad_grad,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::ReluGradGradFunctor<float>>,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::ReluGradGradFunctor<double>>,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::ReluGradGradFunctor<plat::float16>>);
1009
/* ========================================================================== */
1010

1011
/* ======================== leaky relu register  ============================ */
1012 1013 1014
REGISTER_OPERATOR(
    leaky_relu, ops::ActivationOp, ops::LeakyReluOpMaker,
    ops::ActivationOpInferVarType,
H
hong 已提交
1015 1016 1017 1018
    ops::ActivationGradOpMaker<ops::LeakyReluGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::LeakyReluGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1019
    ops::ActFwdInplaceInferer);
1020
REGISTER_OPERATOR(leaky_relu_grad, ops::ActivationOpGrad,
1021
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
1022 1023
                  ops::LeakyReluDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::LeakyReluDoubleGradMaker<paddle::imperative::OpBase>);
1024 1025
REGISTER_OPERATOR(
    leaky_relu_grad_grad,
1026
    ops::ActivationOpDoubleGrad2<ops::LeakyReluGradFunctor<float>::FwdDeps()>,
1027
    ops::ActivationDoubleGradOpInplaceInferer);
1028

1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
REGISTER_ACTIVATION_CPU_KERNEL(leaky_relu, LeakyRelu, LeakyReluFunctor,
                               LeakyReluGradFunctor);
REGISTER_OP_CPU_KERNEL(
    leaky_relu_grad_grad,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::LeakyReluGradGradFunctor<float>>,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::LeakyReluGradGradFunctor<double>>,
    ops::ActivationDoubleGradKernel<
        plat::CPUDeviceContext, ops::LeakyReluGradGradFunctor<plat::float16>>);
1039 1040
/* ========================================================================== */

D
Double_V 已提交
1041 1042 1043 1044 1045 1046 1047 1048 1049
/* ========================    elu  register     ============================ */
REGISTER_OPERATOR(
    elu, ops::ActivationOp, ops::ELUOpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::ELUGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::ELUGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    ops::ActFwdInplaceInferer);
REGISTER_OPERATOR(elu_grad, ops::ActivationOpGrad,
1050
                  ops::ActivationGradOpInplaceInferer,
D
Double_V 已提交
1051 1052 1053 1054 1055
                  ops::ELUDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::ELUDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(
    elu_grad_grad,
    ops::ActivationOpDoubleGrad<ops::ELUGradFunctor<float>::FwdDeps()>,
1056
    ops::ActivationDoubleGradOpInplaceInferer);
D
Double_V 已提交
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068

REGISTER_ACTIVATION_CPU_KERNEL(elu, ELU, ELUFunctor, ELUGradFunctor);
REGISTER_OP_CPU_KERNEL(
    elu_grad_grad, ops::ELUDoubleGradKernel<plat::CPUDeviceContext,
                                            ops::ELUGradGradFunctor<float>>,
    ops::ELUDoubleGradKernel<plat::CPUDeviceContext,
                             ops::ELUGradGradFunctor<double>>,
    ops::ELUDoubleGradKernel<plat::CPUDeviceContext,
                             ops::ELUGradGradFunctor<plat::float16>>);

/* ========================================================================== */

L
lvmengsi 已提交
1069 1070 1071
/* ===========================   sqrt register  ============================= */
REGISTER_OPERATOR(
    sqrt, ops::ActivationOp, ops::SqrtOpMaker, ops::ActivationOpInferVarType,
H
hong 已提交
1072 1073 1074 1075
    ops::ActivationGradOpMaker<ops::SqrtGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::SqrtGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1076
    ops::ActFwdInplaceInferer);
L
lvmengsi 已提交
1077
REGISTER_OPERATOR(sqrt_grad, ops::ActivationOpGrad,
1078
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
1079 1080
                  ops::SqrtDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::SqrtDoubleGradMaker<paddle::imperative::OpBase>);
L
lvmengsi 已提交
1081 1082
REGISTER_OPERATOR(
    sqrt_grad_grad,
1083
    ops::ActivationOpDoubleGrad<ops::SqrtGradGradFunctor<float>::FwdDeps()>,
1084
    ops::ActivationDoubleGradOpInplaceInferer);
1085

L
lvmengsi 已提交
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
REGISTER_ACTIVATION_CPU_KERNEL(sqrt, Sqrt, SqrtFunctor, SqrtGradFunctor);
REGISTER_OP_CPU_KERNEL(
    sqrt_grad_grad, ops::SqrtDoubleGradKernel<plat::CPUDeviceContext,
                                              ops::SqrtGradGradFunctor<float>>,
    ops::SqrtDoubleGradKernel<plat::CPUDeviceContext,
                              ops::SqrtGradGradFunctor<double>>,
    ops::SqrtDoubleGradKernel<plat::CPUDeviceContext,
                              ops::SqrtGradGradFunctor<plat::float16>>);
/* ========================================================================== */

1096 1097 1098 1099
/* ==========================   square register  ============================ */
REGISTER_OPERATOR(
    square, ops::ActivationOp, ops::SquareOpMaker,
    ops::ActivationOpInferVarType,
H
hong 已提交
1100 1101 1102 1103
    ops::ActivationGradOpMaker<ops::SquareGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::SquareGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1104
    ops::ActFwdInplaceInferer);
1105
REGISTER_OPERATOR(square_grad, ops::ActivationOpGrad,
1106
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
1107 1108
                  ops::SquareDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::SquareDoubleGradMaker<paddle::imperative::OpBase>);
1109 1110
REGISTER_OPERATOR(
    square_grad_grad,
1111
    ops::ActivationOpDoubleGrad<ops::SquareGradGradFunctor<float>::FwdDeps()>,
1112
    ops::ActivationDoubleGradOpInplaceInferer);
1113

1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
REGISTER_OP_CPU_KERNEL(square,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<float>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<double>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<int>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<int64_t>>);
REGISTER_OP_CPU_KERNEL(
    square_grad, ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                                           ops::SquareGradFunctor<float>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::SquareGradFunctor<double>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::SquareGradFunctor<int>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::SquareGradFunctor<int64_t>>);
1132 1133 1134 1135 1136 1137 1138 1139

REGISTER_OP_CPU_KERNEL(
    square_grad_grad,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<float>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<double>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
1140 1141 1142 1143 1144
                                ops::SquareGradGradFunctor<plat::float16>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<int>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<int64_t>>);
1145
/* ========================================================================== */
1146 1147 1148 1149 1150

/* ==========================   pow register  ============================ */

REGISTER_OPERATOR(
    pow, ops::PowOp, ops::PowOpMaker, ops::ActivationOpInferVarType,
H
hong 已提交
1151 1152
    ops::PowGradOpMaker<paddle::framework::OpDesc>,
    ops::PowGradOpMaker<paddle::imperative::OpBase>,
1153
    std::conditional<ops::CanInplaceAct<ops::PowGradFunctor<float>>(),
1154
                     ops::ActFwdInplaceInferer, void>::type);
1155
REGISTER_OPERATOR(pow_grad, ops::PowOpGrad,
1156
                  ops::ActivationGradOpInplaceInferer);
1157 1158 1159

REGISTER_OP_CPU_KERNEL(
    pow, ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<float>>,
1160 1161 1162
    ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<double>>,
    ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<int>>,
    ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<int64_t>>);
1163 1164 1165
REGISTER_OP_CPU_KERNEL(
    pow_grad,
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<float>>,
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<double>>,
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<int>>,
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<int64_t>>);
/* ========================================================================== */

/* ==========================   exp register  ============================ */
REGISTER_OPERATOR(
    exp, ops::ActivationOp, ops::ExpOpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::ExpGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::ExpGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    std::conditional<ops::CanInplaceAct<ops::ExpGradFunctor<float>>(),
                     ops::ActFwdInplaceInferer, void>::type);
REGISTER_OPERATOR(exp_grad, ops::ActivationOpGrad,
1181
                  ops::ActivationGradOpInplaceInferer);
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212

REGISTER_OP_CPU_KERNEL(exp,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<float>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<double>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<int>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<int64_t>>);
REGISTER_OP_CPU_KERNEL(
    exp_grad, ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                                        ops::ExpGradFunctor<float>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::ExpGradFunctor<double>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::ExpGradFunctor<int>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::ExpGradFunctor<int64_t>>);
/* ========================================================================== */

/* ==========================   abs register  ============================ */
REGISTER_OPERATOR(
    abs, ops::ActivationOp, ops::AbsOpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::AbsGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::AbsGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    std::conditional<ops::CanInplaceAct<ops::AbsGradFunctor<float>>(),
                     ops::ActFwdInplaceInferer, void>::type);
REGISTER_OPERATOR(abs_grad, ops::ActivationOpGrad,
1213
                  ops::ActivationGradOpInplaceInferer);
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232

REGISTER_OP_CPU_KERNEL(abs,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::AbsFunctor<float>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::AbsFunctor<double>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::AbsFunctor<int>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::AbsFunctor<int64_t>>);
REGISTER_OP_CPU_KERNEL(
    abs_grad, ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                                        ops::AbsGradFunctor<float>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::AbsGradFunctor<double>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::AbsGradFunctor<int>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::AbsGradFunctor<int64_t>>);
1233
/* ========================================================================== */