engine.cc 8.8 KB
Newer Older
Y
Yan Chunwei 已提交
1 2
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

N
nhzlx 已提交
3 4
Licensed under the Apache License, Version 2.0 (the "License"); you may not use
this file except in compliance with the License.
Y
Yan Chunwei 已提交
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/engine.h"

#include <NvInfer.h>
#include <cuda.h>
#include <glog/logging.h>
A
Abhinav Arora 已提交
20
#include <string>
Y
Yan Chunwei 已提交
21
#include "paddle/fluid/inference/analysis/helper.h"
Y
Yan Chunwei 已提交
22 23 24 25 26 27 28
#include "paddle/fluid/inference/tensorrt/helper.h"
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace inference {
namespace tensorrt {

29 30
int TensorRTEngine::runtime_batch_ = 1;

31
void TensorRTEngine::Build(const DescType &paddle_model) {
Y
Yan Chunwei 已提交
32 33 34
  PADDLE_ENFORCE(false, "not implemented");
}

35 36
void TensorRTEngine::Execute(int batch_size, std::vector<void *> *buffers,
                             cudaStream_t stream) {
N
nhzlx 已提交
37
  freshDeviceId();
N
nhzlx 已提交
38
  batch_size_ = batch_size;
39 40
  infer_context_->enqueue(batch_size, buffers->data(), stream, nullptr);
  cudaStreamSynchronize(stream);
N
nhzlx 已提交
41 42 43
  SetRuntimeBatch(batch_size);
}

Y
Yan Chunwei 已提交
44
void TensorRTEngine::FreezeNetwork() {
N
nhzlx 已提交
45
  freshDeviceId();
46
  VLOG(3) << "TRT to freeze network";
Y
Yan Chunwei 已提交
47 48 49 50 51 52 53
  PADDLE_ENFORCE(infer_builder_ != nullptr,
                 "Call InitNetwork first to initialize network.");
  PADDLE_ENFORCE(infer_network_ != nullptr,
                 "Call InitNetwork first to initialize network.");
  // build engine.
  infer_builder_->setMaxBatchSize(max_batch_);
  infer_builder_->setMaxWorkspaceSize(max_workspace_);
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
  bool enable_fp16 = (precision_ == AnalysisConfig::Precision::kHalf);
#if IS_TRT_VERSION_GE(5000)
  if (enable_fp16) {
    bool support_fp16 = infer_builder_->platformHasFastFp16();
    infer_builder_->setFp16Mode(support_fp16);
    if (!support_fp16) {
      LOG(INFO) << "You specify FP16 mode, but the hardware do not support "
                   "FP16 speed up, use FP32 instead.";
    } else {
      LOG(INFO) << "Run Paddle-TRT FP16 mode. ";
    }
  }
#else
  if (enable_fp16)
    LOG(INFO) << "Using FP16 in Paddle-trt must ensure that the version of TRT "
                 "is at least 5."
                 " So, use FP32 to run.";
#endif
  bool enable_int8 = (precision_ == AnalysisConfig::Precision::kInt8);

  if (enable_int8) {
N
nhzlx 已提交
75
    infer_builder_->setInt8Mode(true);
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
    if (calibrator_) {
      infer_builder_->setInt8Calibrator(calibrator_);
    } else {
      infer_builder_->setInt8Calibrator(nullptr);

#if IS_TRT_VERSION_GE(5000)
      infer_builder_->setStrictTypeConstraints(true);
      for (auto &quant_range : quant_dynamic_range_) {
        auto tensor = quant_range.first;
        float range = quant_range.second;
        tensor->setDynamicRange(-range, range);
      }

      std::unordered_set<nvinfer1::ITensor *> all_t;
      for (int i = 0; i < infer_network_->getNbLayers(); i++) {
        auto layer = infer_network_->getLayer(i);
        for (int j = 0; j < layer->getNbOutputs(); j++) {
          all_t.insert(layer->getOutput(j));
        }
      }
      for (int i = 0; i < infer_network_->getNbInputs(); i++) {
        all_t.insert(infer_network_->getInput(i));
      }

      for (auto &t : all_t) {
        if (!quant_dynamic_range_.count(t)) {
          LOG(WARNING)
              << "We are in trt int8 mode(not calibration), scale not setted"
              << " for tensor " << t->getName()
              << ", this might be ok when trt does not need this range";
        }
      }
#endif
    }
N
nhzlx 已提交
110
  }
Y
Yan Chunwei 已提交
111 112 113 114 115 116 117

  infer_engine_.reset(infer_builder_->buildCudaEngine(*infer_network_));
  PADDLE_ENFORCE(infer_engine_ != nullptr, "build cuda engine failed!");

  infer_context_.reset(infer_engine_->createExecutionContext());
}

118
nvinfer1::ITensor *TensorRTEngine::DeclareInput(const std::string &name,
Y
Yan Chunwei 已提交
119
                                                nvinfer1::DataType dtype,
120
                                                const nvinfer1::Dims &dims) {
Y
Yan Chunwei 已提交
121 122 123 124
  PADDLE_ENFORCE_EQ(0, buffer_sizes_.count(name), "duplicate input name %s",
                    name);

  PADDLE_ENFORCE(infer_network_ != nullptr, "should initnetwork first");
125
  auto *input = infer_network_->addInput(name.c_str(), dtype, dims);
Y
Yan Chunwei 已提交
126
  PADDLE_ENFORCE(input, "infer network add input %s failed", name);
Y
Yan Chunwei 已提交
127
  buffer_sizes_[name] = kDataTypeSize[static_cast<int>(dtype)] *
128
                        analysis::AccuDims(dims.d, dims.nbDims) * max_batch_;
129
  PADDLE_ENFORCE(input->isNetworkInput());
L
Luo Tao 已提交
130
  TensorRTEngine::SetITensor(name, input);
Y
Yan Chunwei 已提交
131 132 133
  return input;
}

134 135
void TensorRTEngine::DeclareOutput(const nvinfer1::ILayer *layer, int offset,
                                   const std::string &name) {
Y
Yan Chunwei 已提交
136 137 138
  PADDLE_ENFORCE_EQ(0, buffer_sizes_.count(name), "duplicate output name %s",
                    name);

139
  auto *output = layer->getOutput(offset);
140
  SetITensor(name, output);
Y
Yan Chunwei 已提交
141 142
  PADDLE_ENFORCE(output != nullptr);
  output->setName(name.c_str());
143
  PADDLE_ENFORCE(!output->isNetworkInput());
Y
Yan Chunwei 已提交
144
  infer_network_->markOutput(*output);
145
  PADDLE_ENFORCE(output->isNetworkOutput());
Y
Yan Chunwei 已提交
146 147 148 149 150
  // output buffers' size can only be decided latter, set zero here to mark this
  // and will reset latter.
  buffer_sizes_[name] = 0;
}

N
nhzlx 已提交
151 152 153 154
bool TensorRTEngine::HasDeclared(const std::string &name) {
  return buffer_sizes_.count(name) > 0;
}

155
void TensorRTEngine::DeclareOutput(const std::string &name) {
L
Luo Tao 已提交
156 157 158
  PADDLE_ENFORCE_EQ(0, buffer_sizes_.count(name), "duplicate output name %s",
                    name);

159
  auto *output = TensorRTEngine::GetITensor(name);
L
Luo Tao 已提交
160 161
  PADDLE_ENFORCE(output != nullptr);
  output->setName(name.c_str());
162
  PADDLE_ENFORCE(!output->isNetworkInput());
L
Luo Tao 已提交
163 164 165 166 167 168
  infer_network_->markOutput(*output);
  // output buffers' size can only be decided latter, set zero here to mark this
  // and will reset latter.
  buffer_sizes_[name] = 0;
}

169 170
void TensorRTEngine::SetITensor(const std::string &name,
                                nvinfer1::ITensor *tensor) {
L
Luo Tao 已提交
171
  PADDLE_ENFORCE(tensor != nullptr);
Y
Yan Chunwei 已提交
172
  PADDLE_ENFORCE_EQ(0, itensor_map_.count(name), "duplicate ITensor name %s",
L
Luo Tao 已提交
173 174 175 176
                    name);
  itensor_map_[name] = tensor;
}

177
nvinfer1::ITensor *TensorRTEngine::GetITensor(const std::string &name) {
Y
Yan Chunwei 已提交
178
  PADDLE_ENFORCE(itensor_map_.count(name), "no ITensor %s", name);
L
Luo Tao 已提交
179 180 181
  return itensor_map_[name];
}

182 183 184 185
void TensorRTEngine::SetRuntimeBatch(size_t batch_size) {
  runtime_batch_ = batch_size;
}

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
float *TensorRTEngine::GetWeightCPUData(const std::string &name,
                                        framework::Tensor *weight_tensor,
                                        bool enable_int8,
                                        const std::vector<float> &scale) {
  auto w_dims = weight_tensor->dims();
  platform::CPUPlace cpu_place;
  PADDLE_ENFORCE(!weight_map.count(name),
                 "During TRT Op converter: We set weight %s with the same name "
                 "twice into the weight_map",
                 name);
  weight_map[name].reset(new framework::Tensor());
  weight_map[name]->Resize(weight_tensor->dims());
  TensorCopySync(*weight_tensor, cpu_place, weight_map[name].get());
  float *weight_data = weight_map[name]->mutable_data<float>(cpu_place);

  if (enable_int8) {
    // when the op is fc, scale's size should be 1
    // when the op is conv, the scale's size should be w_dims[0]
    bool valid_scale_size =
        (scale.size() == 1 || scale.size() == static_cast<size_t>(w_dims[0]));
    PADDLE_ENFORCE(valid_scale_size, "TRT int8 quant: invalid scale size");
    for (int i = 0; i < weight_tensor->numel(); i++) {
      bool is_valid_int8 =
          ((weight_data[i] >= -128) && (weight_data[i] <= 127));
      PADDLE_ENFORCE(is_valid_int8,
                     "We are in anakin subgraph int8 mode, the weight of conv "
                     "should be in range [-128, 127]");
      if (scale.size() == 1) {
        weight_data[i] *= (scale[0] / 127);
      } else {
        PADDLE_ENFORCE(w_dims.size() == 4,
                       "TRT int8 quant : We only use the channel quant for "
                       "conv op, so the weight dims should be 4.");
        int inner_size = w_dims[1] * w_dims[2] * w_dims[3];
        weight_data[i] *= (scale[i / inner_size] / 127);
      }
    }
  }
  return weight_data;
}

227 228
int TensorRTEngine::GetRuntimeBatch() { return runtime_batch_; }

N
nhzlx 已提交
229
nvinfer1::IPluginLayer *TensorRTEngine::AddPlugin(
230 231
    nvinfer1::ITensor *const *inputs, int num_inputs,
    plugin::PluginTensorRT *plugin) {
232
  owned_plugin_.emplace_back(plugin);
233
  return infer_network_.get()->addPluginExt(inputs, num_inputs, *plugin);
234 235
}

N
nhzlx 已提交
236 237 238 239 240 241 242
void TensorRTEngine::freshDeviceId() {
  int count;
  cudaGetDeviceCount(&count);
  PADDLE_ENFORCE_LT(device_id_, count);
  cudaSetDevice(device_id_);
}

Y
Yan Chunwei 已提交
243 244 245
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle