test_parallel_dygraph_dataparallel.py 6.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import time
19
import paddle
20
import paddle.fluid as fluid
21 22 23
import copy
import os
import subprocess
24

25
from paddle.distributed.utils import find_free_ports, watch_local_trainers, get_cluster, TrainerProc
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47


def get_cluster_from_args(selected_gpus):
    cluster_node_ips = '127.0.0.1'
    node_ip = '127.0.0.1'

    node_ips = [x.strip() for x in cluster_node_ips.split(',')]

    node_ips.index(node_ip)

    free_ports = None

    free_ports = find_free_ports(len(selected_gpus))
    if free_ports is not None:
        free_ports = list(free_ports)

    trainer_endpoints = []
    for ip in node_ips:
        trainer_endpoints.append(["%s:%d" % (ip, port) for port in free_ports])
    return get_cluster(node_ips, node_ip, trainer_endpoints, selected_gpus)


S
ShenLiang 已提交
48 49 50 51 52
def get_gpus(selected_gpus):
    selected_gpus = [x.strip() for x in selected_gpus.split(',')]
    return selected_gpus


X
xiongkun 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
def start_local_trainers_cpu(trainer_endpoints,
                             training_script,
                             training_script_args,
                             log_dir=None):
    current_env = copy.copy(os.environ.copy())
    current_env.pop("http_proxy", None)
    current_env.pop("https_proxy", None)

    procs = []
    n_rank = len(trainer_endpoints)
    print(trainer_endpoints)
    for rank_id, endpoint in enumerate(trainer_endpoints):
        proc_env = {
            "PADDLE_DISTRI_BACKEND": "gloo",
            "PADDLE_TRAINER_ID": "%d" % rank_id,
            "PADDLE_CURRENT_ENDPOINT": "%s" % endpoint,
            "PADDLE_TRAINERS_NUM": "%d" % n_rank,
            "PADDLE_TRAINER_ENDPOINTS": ",".join(trainer_endpoints)
        }

        current_env.update(proc_env)

        print("trainer proc env:{}".format(current_env))

        assert os.getenv('WITH_COVERAGE',
                         'OFF') == 'OFF', "Gloo don't support WITH_COVERAGE."
        cmd = "python -u " + training_script

        print("start trainer proc:{} env:{}".format(cmd, proc_env))

        fn = None

        proc = subprocess.Popen(cmd.split(" "), env=current_env)

        tp = TrainerProc()
        tp.proc = proc
        tp.rank = rank_id
        tp.log_fn = fn
        tp.cmd = cmd

        procs.append(tp)

    return procs


98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
def start_local_trainers(cluster,
                         pod,
                         training_script,
                         training_script_args,
                         log_dir=None):
    current_env = copy.copy(os.environ.copy())
    #paddle broadcast ncclUniqueId use socket, and
    #proxy maybe make trainers unreachable, so delete them.
    #if we set them to "", grpc will log error message "bad uri"
    #so just delete them.
    current_env.pop("http_proxy", None)
    current_env.pop("https_proxy", None)

    procs = []
    for t in pod.trainers:
        proc_env = {
            "FLAGS_selected_gpus": "%s" % ",".join([str(g) for g in t.gpus]),
            "PADDLE_TRAINER_ID": "%d" % t.rank,
            "PADDLE_CURRENT_ENDPOINT": "%s" % t.endpoint,
            "PADDLE_TRAINERS_NUM": "%d" % cluster.trainers_nranks(),
            "PADDLE_TRAINER_ENDPOINTS": ",".join(cluster.trainers_endpoints())
        }

        current_env.update(proc_env)

        print("trainer proc env:{}".format(current_env))

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            cmd = "python -m coverage run --branch -p " + training_script
        else:
            cmd = "python -u " + training_script

        print("start trainer proc:{} env:{}".format(cmd, proc_env))

        fn = None

        proc = subprocess.Popen(cmd.split(" "), env=current_env)

        tp = TrainerProc()
        tp.proc = proc
        tp.rank = t.rank
        tp.log_fn = fn
        tp.cmd = cmd

        procs.append(tp)

    return procs


147 148 149 150 151 152 153
def get_dist_port_from_flags():
    DIST_UT_PORT = 6175
    if os.getenv("PADDLE_DIST_UT_PORT"):
        DIST_UT_PORT = int(os.getenv("PADDLE_DIST_UT_PORT"))
    return DIST_UT_PORT


154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
class TestMultipleGpus(unittest.TestCase):
    def run_mnist_2gpu(self, target_file_name):
        if not fluid.core.is_compiled_with_cuda(
        ) or fluid.core.get_cuda_device_count() == 0:
            return

        selected_gpus = get_gpus('0,1')
        cluster = None
        pod = None

        cluster, pod = get_cluster_from_args(selected_gpus)

        procs = start_local_trainers(
            cluster,
            pod,
            training_script=target_file_name,
            training_script_args=[])

X
xiongkun 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
        while True:
            alive = watch_local_trainers(procs, cluster.trainers_endpoints())

            if not alive:
                print("Local procs complete, POD info:{}".format(pod))
                break
            time.sleep(3)


class TestMultipleWithGloo(unittest.TestCase):
    def run_mnist_2cpu(self, target_file_name):

        cluster, pod = get_cluster_from_args(
            [0, 1])  #tmp use. for getting trainer_nranks()

        procs = start_local_trainers_cpu(
            cluster.trainers_endpoints(),
            training_script=target_file_name,
            training_script_args=[])

192 193 194 195 196 197 198 199
        while True:
            alive = watch_local_trainers(procs, cluster.trainers_nranks())

            if not alive:
                print("Local procs complete, POD info:{}".format(pod))
                break
            time.sleep(3)

J
JZ-LIANG 已提交
200 201

class TestDataParallelGradientCheck(TestMultipleGpus):
202 203 204 205
    def test_multiple_gpus_dynamic(self):
        self.run_mnist_2gpu('parallel_dygraph_gradient_check.py')


206 207 208 209 210
class TestDataParallelWithPyLayer(TestMultipleGpus):
    def test_parallel_dygraph_dataparallel_with_pylayer(self):
        self.run_mnist_2gpu('parallel_dygraph_dataparallel_with_pylayer.py')


211 212 213 214 215
class TestGradientCheckInEagerMode(TestMultipleGpus):
    def test_multiple_gpus_dynamic(self):
        self.run_mnist_2gpu('parallel_dygraph_gradient_check_in_eager_mode.py')


216 217
if __name__ == "__main__":
    unittest.main()